Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Podcasts
  • Courses
    • Your Courses
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
  • Barringer Process Reliability Introduction Course Landing Page
  • Upcoming Live Events
You are here: Home / Articles / Failure Analysis – The Big Picture

by Doug Lehr Leave a Comment

Failure Analysis – The Big Picture

Failure Analysis – The Big Picture

The floating drilling rig, operating in 6,000 ft. of water, pitched in rough seas 300 miles away from shore as the outer bands of the hurricane’s winds buffeted the drilling location. Per procedure, the crew installed the Storm Packer (SP) in the well to isolate its open wellbore from the ocean before the storm roared across the location – but it failed its pressure test. The crew then installed the back-up SP which passed the pressure test. The well was finally secured, and the 25,000-ton drilling rig was moved out of the hurricane’s path.  Because the first SP failed, a 12-hour process took 30 hours to complete, while wind speed and wave heights increased.

An SP is used to temporarily abandon an offshore well during drilling or workover operations and is one component in a system of barriers that prevents the accidental discharge of hydrocarbons into the ocean. A failure could have hazardous consequences. In this example, the back-up worked, but why the first failed is unknown. A Failure Analysis will be conducted.

Not all equipment failures result in a hazardous situation, but all failures hurt a business’ bottom line. In the upstream energy business, failures in offshore applications have the highest impacts (rig time, the potential for loss of well control, and environmental damage), but failures in land wells also have significant economic impacts (loss of access to reserves, intervention). In many cases, the potential for human injury or fatality exists.

The failure of this small gear resulted in an expensive racing engine rebuild (photo by D. Lehr, part provided by K. Schrader).

A thorough failure analysis is always necessary to confirm the root cause of a failure (product, process, or human factors), and identify mitigations that prevent future incidents. This series of articles will cover these elements of a thorough failure analysis:

  • Scope
  • Informational Collection
  • Root Cause Analysis
  • Failure Simulation
  • Mitigation

The SP failure above did not result in an HSE incident, but there was significant economic loss, including drilling rig spread time (measured in $1,000,000s per day) and OEM brand damage.  

TRUTH: A thorough failure analysis identifies not only root cause, but also mitigations.

This is the 1st in a series of six articles on Failure Analysis for downhole tools.

  1. The Big Picture
  2. Scope
  3. Information Needs
  4. Root Cause Analysis
  5. Failure Simulation
  6. Mitigation

 

Filed Under: Articles, Equipment Risk and Reliability in Downhole Applications, on Risk & Safety

About Doug Lehr

Doug Lehr is the Founder and Principal of Integris Technology Services LLC. He has over 40 years of experience in the development of downhole tools for oil and gas wells and has built a track record of success in technical management, innovation, and industry leadership.

« Tips for Examining Shafts: Prepping for a Root Cause Analysis
Facilitation Skill #2: Controlling Discussion »

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Articles by Doug Lehr, P.E., Founder and Principal, Integris Technology
in the Equipment Risk and Reliability in Downhole Applications series

Join Accendo

Receive information and updates about articles and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Articles

  • Gremlins today
  • The Power of Vision in Leadership and Organizational Success
  • 3 Types of MTBF Stories
  • ALT: An in Depth Description
  • Project Email Economics

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy