Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Podcasts
  • Courses
    • Your Courses
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
  • Barringer Process Reliability Introduction Course Landing Page
  • Upcoming Live Events
You are here: Home / Articles / Failure Analysis – Mitigation

by Doug Lehr Leave a Comment

Failure Analysis – Mitigation

Failure Analysis – Mitigation

Failure Simulation has confirmed all root causes in the Storm Packer failure analysis. The focus is now on mitigations that prevent them from occurring again. 

Mitigations are controls that prevent failures or reduce their probability of occurring. Ideally, an OEM implements mitigations to the product through Design for Reliability (DfR) activities before commercialization. Some mitigations may be best practices in product design. Others may be best practices for installation or maintenance processes. Some have been acquired through FRACAS programs. However, all will be based on institutional knowledge.

Mitigations are strong and effective when they:

  • Reflect institutional learning.
  • Are implemented with oversight.
  • Are documented and revision controlled. 

Mitigations are weak and ineffective when they:

  • Are not documented.
  • Are based on “tribal knowledge.”
  • Are implemented without review and approval.

This series of articles began by describing the failure of a Storm Packer while being installed from a floating drilling rig operating in 6,000 ft. of water. 

It is based on actual events.

No release of hydrocarbons or human injury resulted from this failure. The failure analysis included forensic inspection, process investigations, root cause analysis, and full-scale laboratory simulation of Storm Packer function. It lasted 4 months. The analysis revealed that the true root causes were process related: a) operation of the drilling rig outside of its specification (wave height and current velocity limitations exceeded), and b) incorrect field-level configuration of the Storm Packer (the assembly was unnecessarily long and stiff). Subsequently, the operator of the well implemented mitigations to control decision-making for storm preparation and the OEM implemented mitigations to control configuration at field level.. 

TRUTH: Effective mitigations are always documented and reflect institutional learning.

This is the 6th of six articles in the Failure Analysis series for downhole tools.

  1. The Big Picture
  2. Scope
  3. Information Needs
  4. Root Cause Analysis
  5. Failure Simulation
  6. Mitigation

Filed Under: Articles, Equipment Risk and Reliability in Downhole Applications, on Risk & Safety

About Doug Lehr

Doug Lehr is the Founder and Principal of Integris Technology Services LLC. He has over 40 years of experience in the development of downhole tools for oil and gas wells and has built a track record of success in technical management, innovation, and industry leadership.

« Is the Human Being Really an ‘Asset’?
Four Reasons to Rethink your Reliability Improvement Journey »

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Articles by Doug Lehr, P.E., Founder and Principal, Integris Technology
in the Equipment Risk and Reliability in Downhole Applications series

Join Accendo

Receive information and updates about articles and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Articles

  • Gremlins today
  • The Power of Vision in Leadership and Organizational Success
  • 3 Types of MTBF Stories
  • ALT: An in Depth Description
  • Project Email Economics

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy