Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Podcasts
  • Courses
    • Your Courses
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
  • Barringer Process Reliability Introduction Course Landing Page
  • Upcoming Live Events
You are here: Home / Articles / The Value of Precision Quality Standards

by Mike Sondalini Leave a Comment

The Value of Precision Quality Standards

The Value of Precision Quality Standards

When equipment working parts are operated within their precision quality standard zones, world-class reliability is guaranteed.

The figures below demonstrates the importance of setting precision quality standards to achieve outstanding equipment reliability. It comes from a conference presentation on the production equipment reliability improvement in a steel mill in Australia.

At the time the company was called OneSteel. Its production plant availability was terrible, with only 52% availability. To learn why reliability was so poor, and fix the problems, the company formed a reliability improvement group. The team found that nearly a third of repairs were repeated every month, and nearly half of the repairs re-occurred every three months (Graph 1).

They also identified the two major problems. Firstly, that the quality of equipment components was imprecise. Secondly, the operating conditions were outside design standards. As a result, the machinery was out of balance, suffering high vibration levels, overloaded operations, contaminated lubricants causing particle wear, misaligned shafts, and were operating at high temperatures (Graph 2).

At this time, the standards the company was using for maintenance and were considered tolerable. They were “close enough”. However, the use of these low-quality standards meant that machinery ran well below its designed reliability. Instead of getting 100% of designed life, their machines are getting barely one quarter of the possible reliability.

The improvement team established new higher engineering standards, and new higher operating standards for the mill’s production assets. By doing so they eliminated misalignment and out-of-balance issues, reducing vibration levels. Equipment was operated within the design loads and temperature ranges specified by the machine manufacturers. Lubricants were replaced to prevent contamination and particle wear. The equipment was rebuilt to precision quality standards and run at higher operating quality standards.

Once this was achieved the machinery failure rate dropped dramatically and equipment reliability step-changed up to its designed service duty. The Graph 2 shows there was immediate, huge improvement in reliability. It was not a gradual rise in the equipment reliability—once the precision quality standards were delivered there was a significant change in reliability.

These graphs are real evidence of the necessity for equipment to be built precisely to high engineering quality standards, and to run machinery to high operational standards. High equipment reliability is only possible within the precision quality standards zone where components work together precisely so the equipment runs smoothly. This means that there is no looseness; misalignment does not exist; vibration levels are extremely low; and lubricants have few wear particles and no free water.

Over a 5 to 6-year period OneSteel turned their production plant performance around to reach a plant availability of 77%. Their production throughput increased, and their maintenance costs reduced. All because they moved their equipment maintenance and operation standards into the precision quality standards zone.

Nothing else you do to improve equipment reliability matters until your machines and equipment work and live within the precision quality standards zone—only within the precision zone can you get the utmost operating asset reliability.

Filed Under: Articles, Life Cycle Asset Management, on Maintenance Reliability

About Mike Sondalini

In engineering and maintenance since 1974, Mike’s career extends across original equipment manufacturing, beverage processing and packaging, steel fabrication, chemical processing and manufacturing, quality management, project management, enterprise asset management, plant and equipment maintenance, and maintenance training. His specialty is helping companies build highly effective operational risk management processes, develop enterprise asset management systems for ultra-high reliable assets, and instil the precision maintenance skills needed for world class equipment reliability.

« Evaluating Your Risk Management Framework
Understanding Anomaly Detection (AD) with the P-F Curve »

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Headshot of Mike SondaliniArticles by Mike Sondalini
in the Life Cycle Asset Management article series

Join Accendo

Receive information and updates about articles and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Posts

  • Gremlins today
  • The Power of Vision in Leadership and Organizational Success
  • 3 Types of MTBF Stories
  • ALT: An in Depth Description
  • Project Email Economics

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy