Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Podcasts
  • Courses
    • Your Courses
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
  • Barringer Process Reliability Introduction Course Landing Page
  • Upcoming Live Events
You are here: Home / Articles / Plot a Distribution Curve of Maintenance KPIs

by Mike Sondalini Leave a Comment

Plot a Distribution Curve of Maintenance KPIs

Plot a Distribution Curve of Maintenance KPIs

MAKE USE OF A PROBABILITY DISTRIBUTION CURVE OF MAINTENANCE KPIS TO SHOW WHETHER YOUR MAINTENANCE PERFORMANCE IMPROVEMENT EFFORTS ARE WORKING. A KPI PROBABILITY DISTRIBUTION CURVE GIVES NEW INSIGHTS INTO YOUR MAINTENANCE PERFORMANCE.

—

Using a distribution curve of maintenance KPIs as a new maintenance performance measure was what we recommended to this Maintenance Manager.

I am Mechanical Maintenance Engineer in a manufacturing company. I am struggling in writing a convincing Engineering Report. What really is it that I must include in the report?

I am required to report on the performance of the maintenance department. In other organizations I have worked for I used to include all maintenance KPIs in the department monthly maintenance report. But my boss at this company seems to want something else, however the requirements are unclear. Could there be a generic way of doing maintenance KPI reports?

The organization is rapidly growing from being a small family business into a large state-of-the-art corporation. I am still developing and formulating an equipment improvement program and its step-by-step implementation.

By the way, your website is my knowledge bank when it comes to information on maintenance and reliability.

Thanks for the kind words about the worth of the material on the website, and also for your ongoing support.

I can suggest you do one more thing with your maintenance KPI’s. Plot a probability distribution curve of maintenance KPIs and also show those performance curves to your manager.

Divide the historic KPI range or span into five percent proportions and count the number of times a historic maintenance KPI value falls into a range. The total count of values in a range represents the frequency the respective maintenance KPI value occurred in the historic data. You then plot the curve of the historic frequency distribution. Put the five percent ranges on the x-axis and the frequency count on the y-axis.

Try and get many historic data points for each distribution curve of maintenance KPIs to enable you to identify the widest range of values that arise with each maintenance performance indicator you use.

Your KPI frequency distribution plot is a reflection of the probability or chance of where the next KPI value you report to your manager will fall. The shape of each distribution curve is a perfect reflection of your past maintenance performance. It is also an indicator of your future maintenance performance.

Each time you report the maintenance KPI to your manager also show its position on the KPI distribution curve. The location of the KPI value on the curve will tell you immediately whether your maintenance KPI improvement initiatives are working successfully or not. If they are successful the KPI value will fall into the ‘good outcome’ bands of the performance distribution plot. If the KPI result falls into the wrong part of the curve you will know that nothing good has yet happened from what improvements you have done.

Showing the distribution curve of each maintenance KPI gives a manager a complete overview of what results he or she can expect from the operation. Very often the KPI distribution curves are unsettling because the business performance they indicate is so bad.

The shape of the maintenance KPI distribution curves have meaning. A wide distribution curve indicates an unstable operation full of randomness. Such results can only come from the use of unstable business processes in the company. The location of the peak will be at the most commonly repeating results. Those KPI results are the performance your maintenance processes will most commonly produce. A high peak in the poor region of the curve indicates you have many problem causes that randomly impact your maintenance KPIs. A tight, high curve in the good KPI results region of the plot is what you want.

Once you model the probability of maintenance KPI outcomes you see the real truth of what your company is experiencing from its maintenance efforts. You can then investigate what events caused the shape of the distribution curve and put into place the right maintenance process improvements to drive your KPI probability curves to the right position.

My best regards to you,

Mike Sondalini

Filed Under: Articles, Life Cycle Asset Management, on Maintenance Reliability Tagged With: Key Performance Indicators (KPIs)

About Mike Sondalini

In engineering and maintenance since 1974, Mike’s career extends across original equipment manufacturing, beverage processing and packaging, steel fabrication, chemical processing and manufacturing, quality management, project management, enterprise asset management, plant and equipment maintenance, and maintenance training. His specialty is helping companies build highly effective operational risk management processes, develop enterprise asset management systems for ultra-high reliable assets, and instil the precision maintenance skills needed for world class equipment reliability.

« Five Technology Trends in Manufacturing
HALT or ALT »

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Headshot of Mike SondaliniArticles by Mike Sondalini
in the Maintenance Management article series

Join Accendo

Receive information and updates about articles and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Posts

  • Gremlins today
  • The Power of Vision in Leadership and Organizational Success
  • 3 Types of MTBF Stories
  • ALT: An in Depth Description
  • Project Email Economics

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy