Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Podcasts
  • Courses
    • Your Courses
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
  • Barringer Process Reliability Introduction Course Landing Page
  • Upcoming Live Events
You are here: Home / Articles / Physics of Failure

by Mike Sondalini Leave a Comment

Physics of Failure

Physics of Failure

First parts fail, then machines stop! If its parts don’t break your machines and equipment will always be reliable

Physics-of-Failure microstructure science explains why components fail, and why they get failed during service life. Understanding Physics-of-Failure is foundational to the Plant Wellness Way EAM methodology

Slide 11 – Physics-of-Failure Microstructure Science Explains the Failure of All Parts and the Breakdown of All Machinery and Equipment

This slide applies Physics-of-Failure microstructure science to explain why parts fail and machines breakdown. The cause of parts failure can be reduced to two categories. The first is overload of the microstructure, where the material-of-construction is pulled apart. The second category is when the material-of-construction degrades, where the microstructure is removed, like in corrosion or chemical attack, or material is fatigued and separates to the point that the remaining structure cannot take the load.

When engineers design a machinery part, they start by determining the operating loads the part will suffer during its service life. The loads can vary from virtually zero when the machine the part is in is not working, through to high stress conditions when the machine is operating under severe running situations or starting up under a large load. Using this information, the engineer selects a material-of-construction to make the part. The curves shown in the top section of the slide represent that scenario.

The blue distribution curve on the left is the range of operating stresses the part will see during its service life. The left-hand y-axis represents the frequency that those stresses are seen by the part during its lifetime. The black distribution curve on the right represent the range of stress carrying capacity of the material for the part. The variability in material strength depends on the raw materials, the manufacturing process, and the quality control and quality assurance used in making the material-of-construction.

You can see that there is a wide distance between the range of service loads and the material’s load-carrying capacity. This separation between the service load and material strength is called the factor-of-safety. In theory the part will never fail because even the highest operating load is well below the material’s capacity to carry that load. Yet, if you look at the pinion gear in the picture several teeth are broken off the gear. What was meant to happen in theory during the part’s service life did not occur when it was used.

For a gear tooth to break, its material must have seen a massive overload. The service load curve must have moved to the right and the stresses on the part were beyond its ability to take. One way that can happen to gear teeth is if a wear particle of a few microns size gets trapped between the teeth of the driven gear and the driving gear. All the forces are now directed through the few-microns sized particle and onto each tooth’s material-of-construction. Instead of being distributed over the whole area of each tooth, the load is now on a very small surface area of a tooth. The stress in that small area is huge, so massive that it causes the material microstructure to fail and makes the tooth shear off.

The bottom set of curves represent the second scenario, where the material of construction is damaged to the point where what material remains cannot take the load it carries. In such situations the load carrying capacity of the material shifts to the left. As the microstructure available to carry the load reduces in size, the point eventually arrives where even a normal load is too much for the remaining material and the part fails.

There is a science to the failure of materials called Physics-of-Failure microstructure science. It covers the range of events and causes that can lead to the collapse of the materials-of-construction which make up the microstructure of the parts in the equipment and machines we use. Understanding the behaviour of materials through Physics-of-Failure microstructure science, and using the information and insights gained from it, are foundational to selecting truly effective equipment reliability creating strategy in the Plant Wellness Way EAM methodology.

Filed Under: Articles, Life Cycle Asset Management, on Maintenance Reliability

About Mike Sondalini

In engineering and maintenance since 1974, Mike’s career extends across original equipment manufacturing, beverage processing and packaging, steel fabrication, chemical processing and manufacturing, quality management, project management, enterprise asset management, plant and equipment maintenance, and maintenance training. His specialty is helping companies build highly effective operational risk management processes, develop enterprise asset management systems for ultra-high reliable assets, and instil the precision maintenance skills needed for world class equipment reliability.

« Communication and Consultation in ISO 31K Risk Management
Measuring Employees’ Fears and Effects »

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Headshot of Mike SondaliniArticles by Mike Sondalini
in the Life Cycle Asset Management article series

Join Accendo

Receive information and updates about articles and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Posts

  • Gremlins today
  • The Power of Vision in Leadership and Organizational Success
  • 3 Types of MTBF Stories
  • ALT: An in Depth Description
  • Project Email Economics

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy