Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Podcasts
  • Courses
    • Your Courses
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
  • Barringer Process Reliability Introduction Course Landing Page
  • Upcoming Live Events
You are here: Home / Articles / Design for Reliability by using Design-out Maintenance to get High Reliability Equipment

by Mike Sondalini 1 Comment

Design for Reliability by using Design-out Maintenance to get High Reliability Equipment

Design for Reliability by using Design-out Maintenance to get High Reliability Equipment

Design-out maintenance is a root cause failure elimination category where the solution is to design for reliability and intentionally create highly reliable equipment through an engineering design change.

—

I am a design engineer and am considering plant improvement as a more proactive activity for our department. Being in design I am interested in design-out maintenance solutions and the role they play in maintenance cost reduction. Particularly where design out solutions are used for failure elimination.

I like the words of Michael V. Brown, “Many right minded industrial organizations have adopted the seemingly unattainable goal of ‘All accidents are preventable.’ They know that the goal helps people focus on the ways to prevent accidents, i.e. reducing unsafe conditions and unsafe acts. A similar approach should be taken with respect to equipment failures in a plant. Focusing on a goal such as ‘all failures are preventable’, or ‘all downtime is preventable’, leads plant personnel to identify the causes of failures and discover ways to reduce them.”

I am doing some research in the field of design-out and wonder if you have case studies or methodology regarding design out.

Hello John,

The definition of Design-out Maintenance from the Asset Management Body of Knowledge (AMBoK) is: The Maintenance tactic whereby changes or modifications are done to the equipment to remove a failure cause, or to allow other maintenance strategies to be applicable in managing the consequence of the failure.

This definition is a dichotomy: Design-out Maintenance cannot mean both re-engineering to remove the cause of failure, and at the same time allow failure in a better-managed, less-costly fashion.

To manage the consequences of failure and ‘allow failure in a better-managed, less-costly fashion’ is merely a change in maintenance strategy and/or operating strategy to those actions that deliver lower maintenance costs. In other words, you change your maintenance and/or operating practices and methods to reduce stress in your equipment components. Any time you reduce stress in machinery and equipment parts you will increase the time to a component’s failure. You have not actually designed-out the causes of failure.

You could make an acceptable argument to satisfy the AMBoK definition if you said that by changing maintenance and operating strategy you ‘design-out’ failure causing problems from your maintenance and/or operating processes. But for me ‘design-out maintenance’ is taken for its literal meaning: the elimination of maintenance through the creation of reliability by design.

In that case, the definition of Design-out Maintenance is: The eradication of a cause of failure from a component by a reliability creating engineering design change. Design-out is used to engineer high reliability parts into machines, plant and equipment because the risks associated with the failure are too expensive to accept.

In Reliability Centered Maintenance (RCM), design-out is a necessary final solution when maintenance and/or operating strategy is ineffective in sufficiently reducing risk. In RCM, design-out is where parts are re-engineered to prevent a failure mode(s). This is evidence that ‘design-out’ really means reliability improvement by an engineering design change, and does not include in its meaning a change in maintenance or operating strategy (which are actually business process changes).

DESIGN-OUT MAINTENANCE AND DESIGN FOR RELIABILITY

Proactive reliability-creating, design-out solutions include the likes of: Failure Mode Effects Analysis FMEA, Physics of Failure Analysis PoFA, Highly Accelerated Life Testing HALT, Highly Accelerated Stress Screening HASS, and more. In these design-out methodologies you remove opportunities for failure through component design changes. In a new design you prototype it and intentionally make it fail, while looking for failure modes to design-out. In an existing design you re-engineer it so that there are fewer failure modes when in service.

Finite Element Analysis FEA is a useful computer modelling tool to ‘virtually prototype’ component designs. Before making the part you model it digitally and apply computer-generated stresses to it. The stresses simulate what might happen in service and you can see the component’s weaknesses as it distorts and distresses from the virtual loads and forces. But you should also make a real component and put it in a real machine and stress it through failure testing trials to identify failure modes.

DESIGN-OUT MAINTENANCE AND RISK REDUCTION

There must be economic value from having a better design. You would only make changes to a design because it is less costly than not doing so. This immediately implies that operating risk drives the need for a design change. In the figure below you can see when design-out maintenance becomes viable—if the consequence of a single event is unacceptable, and also when you have many repetitive failures.

With design-out reliability improvement you make better engineered designs. You create high reliability components that do not fail as often. You eliminate failure causes so parts do not fail from current failure modes. Design-out gives you a powerful methodology for defect removal and failure cause elimination so maintenance is not required.

My best regards to you,

Mike Sondalini

Filed Under: Articles, Life Cycle Asset Management, on Maintenance Reliability

About Mike Sondalini

In engineering and maintenance since 1974, Mike’s career extends across original equipment manufacturing, beverage processing and packaging, steel fabrication, chemical processing and manufacturing, quality management, project management, enterprise asset management, plant and equipment maintenance, and maintenance training. His specialty is helping companies build highly effective operational risk management processes, develop enterprise asset management systems for ultra-high reliable assets, and instil the precision maintenance skills needed for world class equipment reliability.

« Hazard Rate and Related Concepts in Reliability Engineering
The Link Between Agile and Agility »

Comments

  1. Jingsong Xie says

    June 26, 2024 at 1:52 AM

    Mike, I think the definition suggests two essential assumptions.
    1. potential risks are known
    2. identified root causes are validated
    For machines, which primarily subject to wear out failures, those assumptions might not be an issue, but not likely for electrical and electronic equipment.

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Headshot of Mike SondaliniArticles by Mike Sondalini
in the Life Cycle Asset Management article series

Join Accendo

Receive information and updates about articles and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Posts

  • Gremlins today
  • The Power of Vision in Leadership and Organizational Success
  • 3 Types of MTBF Stories
  • ALT: An in Depth Description
  • Project Email Economics

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy