Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Podcasts
  • Courses
    • Your Courses
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
  • Barringer Process Reliability Introduction Course Landing Page
  • Upcoming Live Events
You are here: Home / Archives for Failure Rate

by Fred Schenkelberg Leave a Comment

5 Reasons Rate of Change is Important

5 Reasons Rate of Change is Important

A simplifying assumption associated with using MTTF or MTBF implies a constant hazard rate. Some assume we’re in the useful life section of the bathtub curve. Others do not understand what assumptions they are making.

Using MTTF or MTBF has many problems and as regular reader here know, we should avoid using these metrics.

By using MTTF or MTBF we also lose information. We are unable to measure or track the rate of change of our equipment or system’s failure rates (hazard rate). The simple average is just an average and does not contain the essential information we need to make decisions.

Let’s explore five different reasons the rate of change of a failure rate is important to measure and track. [Read more…]

Filed Under: Articles, NoMTBF Tagged With: Failure Rate

by Fred Schenkelberg 5 Comments

The 2 Parameter Weibull Distribution 7 Formulas

The 2 Parameter Weibull Distribution 7 Formulas

This is part of a short series on the common life data distributions.

The Weibull distribution is both popular and useful. It has some nice features and flexibility that support its popularity. This short article focuses on 7 formulas of the Weibull Distribution.

If you want to know more about fitting a set of data to a distribution, well that is in another article.

It has the essential formulas that you may find useful when answering specific questions. Knowing a distribution’s set of parameters does provide, along with the right formulas, a quick means to answer a wide range of reliability related questions. [Read more…]

Filed Under: Articles, CRE Preparation Notes, Probability and Statistics for Reliability Tagged With: Failure Rate, Weibull distribution

by Fred Schenkelberg Leave a Comment

How to Calculate Reliability Given 3 Different Distributions

How to Calculate Reliability Given 3 Different Distributions

On occasion, we want to estimate the reliability of an item at a specific time.

Maybe we are considering extending the warranty period, for example, and want to know the probability of no failures over one year instead of over the current 3 months.

Or, let’s say you talked to a bearing vendor and have the Weibull parameters and wish to know the reliability value over 2 years.

Whatever specific situation, you have the life distributions parameters. You just need to calculate reliability at a specific time. We can do that and let’s try it with three distributions using their respective reliability functions: exponential, Weibull, and lognormal. [Read more…]

Filed Under: Articles, CRE Preparation Notes, Probability and Statistics for Reliability Tagged With: Exponential distribution, Failure Rate, Statistics distributions and functions, Weibull distribution

by nomtbf Leave a Comment

Are the Measures Failure Rate and Probability of Failure Different?

Are the Measures Failure Rate and Probability of Failure Different?

Old machinery enjoyed a failure rate, which one though?Are the Measures Failure Rate and Probability of Failure Different?

Failure rate and probability are similar. They are slightly different, too.

One of the problems with reliability engineering is so many terms and concepts are not commonly understood.

Reliability, for example, is commonly defined as dependable, trustworthy, as in you can count on him to bring the bagels. Whereas, reliability engineers define reliability as the probability of successful operation/function within in a specific environment over a defined duration.

The same for failure rate and probability of failure. We often have specific data-driven or business-related goals behind the terms. Others do not.
If we do not state over which time period either term applies, that is left to the imagination of the listener. Which is rarely good.

Failure Rate Definition

There at least two failure rates that we may encounter: the instantaneous failure rate and the average failure rate. The trouble starts when you ask for and are asked about an item’s failure rate. Which failure rate are you both talking about?

The instantaneous failure rate is also known as the hazard rate h(t)

$latex \displaystyle&s=3 h\left( t \right)=\frac{f\left( t \right)}{R\left( t \right)}$

Where f(t) is the probability density function and R(t) is the relaibilit function with is one minus the cumulative distribution function. The hazard rate, failure rate, or instantaneous failure rate is the failures per unit time when the time interval is very small at some point in time, t. Thus, if a unit is operating for a year, this calculation would provide the chance of failure in the next instant of time.

This is not useful for the calculation of the number of failures over that year, only the chance of a failure in the next moment.

The probability density function provides the fraction failure over an interval of time. As with a count of failures per month, a histogram of the count of failure per month would roughly describe a PDF, or f(t). The curve described for each point in time traces the value of the individual points in time instantaneous failure rate.

Sometimes, we are interested in the average failure rate, AFR. Where the AFR over a time interval, t1 to t2, is found by integrating the instantaneous failure rate over the interval and divide by t2 – t1. When we set t1 to 0, we have

$latex \displaystyle&s=3 AFR\left( T \right)=\frac{H\left( T \right)}{T}=\frac{-\ln R\left( T \right)}{T}$

Where H(T) is the integral of the hazard rate, h(t) from time zero to time T,
T is the time of interest which define a time period from zero to T,
And, R(T) is the reliability function or probability of successful operation from time zero to T.

A very common understanding of the rate of failure is the calculation of the count of failures over some time period divided by the number of hours of operation. This results in the fraction expected to fail on average per hour. I’m not sure which definition of failure rate above this fits, and yet find this is how most think of failure rate.

If we have 1,000 resistors that each operate for 1,000 hours, and then a failure occurs, we have 1 / (1,000 x 1,000 ) = 0.000001 failures per hour.

Let’s save the discussion about the many ways to report failure rates, AFR (two methods, at least), FIT, PPM/K, etc.

Probability of Failure Definition

I thought the definition of failure rate would be straightforward until I went looking for a definition. It is with trepidation that I start this section on the probability of failure definition.

To my surprise it is actually rather simple, the common definition both in common use and mathematically are the same. There are two equivalent ways to phrase the definition:

  1. The probability or chance that a unit drawn at random from the population will fail by time t.
  2. The proportion or fraction of all units in the population that fail by time t.

We can talk about individual items or all of them concerning the probability of failure. If we have a 1 in 100 chance of failure over a year, then that means we have about a 1% chance that the unit we’re using will fail before the end of the year. Or it means if we have 100 units placed into operation, we would expect one of them to fail by the end of the year.

The probability of failure for a segment of time is defined by the cumulative distribution function or CDF.

When to Use Failure Rate or Probability of Failure

This depends on the situation. Are you talking about the chance to failure in the next instant or the chance of failing over a time interval? Use failure rate for the former, and probability of failure for the latter.

In either case, be clear with your audience which definition (and assumptions) you are using. If you know of other failure rate or probability of failure definition, or if you know of a great way to keep all these definitions clearly sorted, please leave a comment below.

Filed Under: Articles, NoMTBF Tagged With: Failure Rate

by Fred Schenkelberg 3 Comments

Derating Value

Derating Value

This example is based on a real situation. After a class on design for reliability, a senior manager declared that every component would be fully derated in every product (electronic test & measurement devices). Within a year the design team redesigned all new and existing products, with strict adherence to the derating guidelines provided in the class. A year after the class the product line enjoyed a 50% reduction in warranty claims. They learned about derating and a manager saw the potential value. [Read more…]

Filed Under: Articles, Musings on Reliability and Maintenance Topics, on Product Reliability Tagged With: Derating, Failure Rate

by Fred Schenkelberg 6 Comments

Common Formulas

Common Formulas

Running through a couple of practice CRE exams recently (yeah, I know I should get out more…) found a few formulas kept coming up in the questions. While it is not a complete list of equation you’ll need for the exam, the following five will help in many of the questions. They seem popular maybe because the relate to key concepts in the body of knowledge, or they are easy to use in question creation. I do not know why. [Read more…]

Filed Under: Articles, CRE Prep, CRE Preparation Notes, Probability and Statistics for Reliability Tagged With: Exponential distribution, Failure Rate, Statistics distributions and functions

by Fred Schenkelberg 12 Comments

Exponential Reliability

Exponential Reliability

Down to the last week of preparation for the exam on March 2nd. Good luck to all those signed up for that exam date. Time to focus on preparing your notes, organizing your references and doing a final run through of practice exams. [Read more…]

Filed Under: Articles, CRE Preparation Notes, Probability and Statistics for Reliability, Reliability Modeling and Predictions Tagged With: Exponential distribution, Failure Rate, Reliability Block Diagram (RBD), Statistics distributions and functions

by Fred Schenkelberg 3 Comments

Two Pumps Problem

Two Pumps Problem

Let’s say we have two identical pumps share a load in parallel. The failure rate for a pump in this mode of operation is 0.0002 failures per hour. If one pump has to carry the full load alone, that pumps failure rate increases to 0.0009 failures per hour.

What is the reliability of the two pump system over a 168 hour week of operation? [Read more…]

Filed Under: Articles, CRE Preparation Notes, Reliability Modeling and Predictions Tagged With: Failure Rate, Reliability Block Diagram (RBD)

[popup type="" link_text="Get Weekly Email Updates" link_class="button" ][display_form id=266][/popup]

The Accendo Reliablity logo of a sun face in circuit

Please login to have full access.




Lost Password? Click here to have it emailed to you.

Not already a member? It's free and takes only a moment to create an account with your email only.

Join

Your membership brings you all these free resources:

  • Live, monthly reliability webinars & recordings
  • eBooks: Finding Value and Reliability Maturity
  • How To articles & insights
  • Podcasts & additional information within podcast show notes
  • Podcast suggestion box to send us a question or topic for a future episode
  • Course (some with a fee)
  • Largest reliability events calendar
  • Course on a range of topics - coming soon
  • Master reliability classes - coming soon
  • Basic tutorial articles - coming soon
  • With more in the works just for members
Speaking of Reliability podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Dare to Know podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Accendo Reliability Webinar Series podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Articles

  • Gremlins today
  • The Power of Vision in Leadership and Organizational Success
  • 3 Types of MTBF Stories
  • ALT: An in Depth Description
  • Project Email Economics

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy