Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Podcasts
  • Courses
    • Your Courses
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
  • Barringer Process Reliability Introduction Course Landing Page
  • Upcoming Live Events
You are here: Home / Articles / on Product Reliability / Apex Ridge / Stress Margin Design with perfect precision, and some parts blowing up

by Adam Bahret Leave a Comment

Stress Margin Design with perfect precision, and some parts blowing up

Stress Margin Design with perfect precision, and some parts blowing up

This video clip looks like a disaster but is actually a visualization of precision reliability engineering………. right after a disaster .

 

 

 

” The perfect race car crosses the finish line in first place and then falls to pieces.”

– Ferdinand Porsche, Porsche Motor Cars

In this case, the car did not cross the finish line but what occurs demonstrates an amazing accuracy in use-case, environmental, and mission profile definition… Ferdinand’s goal.

The two suspension sides look like they blow up simultaneously as if the car hit something.  But in fact what has occurred is that one side failed, a likely manufacturing or assembly issue (Somebody made a mistake!), followed a split second later by the second suspension system failing, seen in this frame. It’s evidence of very impressive engineering.  I’ll explain why.

Ferdinand Porsche’s quote highlights how racing is a competition on who can balance performance and reliability perfectly.  Any added reliability (overdesign) slows down the car.  A car that get’s maximum performance can’t handle any variability and surely won’t finish.

The goal is to accurately characterize all inputs and anticipated variabilities of use cases, environmental inputs, and design so life is consumed completely in a determined “use life”.  Any remaining life is a waste.  In design,  we often compensate for rough estimations of use cases  (lazy) with large safety margins, which waste money and performance. We can then quickly dismiss the importance of reliability analysis and testing tools until we find out we don’t have a competitive product or that our over design didn’t cover all the use case “estimations” and we have failures.

Auto racing, especially F1,  is the ultimate reliability test and engineering competition, so cutting corners will be exposed very quickly and for all to see.

So what is happening in the video?

What is occurring is a demonstration of a design that is only as strong as it needs to be so it can be as light as possible. The weight of suspension components is more critical than anywhere else in the car because it isn’t just acceleration, braking, and cornering the is affected if too heavy. It adds “unsprung weight”, weight not carried by the suspension, which can kill the cars ability to keep traction on uneven surfaces.

As I mentioned the video is deceptive in that it looks like both sides of the front suspension are exploding in unison.  But the split second between them is the second reacting to the first failing.  The second system fails because there was no point in designing it to be strong enough to handle the situation when it’s partner dropped out. This all is occurring under braking. Under braking, the suspension control arms are getting their max loading as they decelerate the car at 4g. I don’t know how the drivers don’t blackout?

Both front wheels are sharing this load.  When one fails it’s not like the other takes double the load.  Each wheel is already at maximum traction in braking force.  Any increased request for braking just results in the tire skidding.  But there is a slight increase in loading on the remaining suspension arms because when the one side fails the other side is now carrying a little more weight which does allow a bit more traction, thus a bit more braking force.  And it is very little.  This slight increase in stress causes the remaining suspension components to fail.

So what we have seen is a demonstration of a system that has such a low-stress margin that is can survive the intended stresses for the use life cases and nothing more. It is a precise design based in a very accurate use and environmental profile that wer inputs to reliability techniques we so commonly discuss, Stress Margin testing, Accelerated Life Testing, Use Case profiling, etc

A very Impressive demonstration of precision engineering that has lead to many checkered flags.

Filed Under: Apex Ridge, Articles, on Product Reliability

About Adam Bahret

I am a Reliability engineer with over 20 years of experience in mechanical and electrical systems in many industries. I founded Apex Ridge Reliability as a firm to assist technology companies with the critical reliability steps in their product development programs and organizational culture.

« Risk Management and Fear
What Is A Key Performance Indicator (KPI)? »

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Article by Adam Bahret
in the Apex Ridge series

Join Accendo

Receive information and updates about articles and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Articles

  • Gremlins today
  • The Power of Vision in Leadership and Organizational Success
  • 3 Types of MTBF Stories
  • ALT: An in Depth Description
  • Project Email Economics

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy