Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Podcasts
  • Courses
    • Your Courses
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
  • Barringer Process Reliability Introduction Course Landing Page
  • Upcoming Live Events
You are here: Home / Articles / Steel Hydrogen Embrittlement

by Michael Pfeifer, Ph.D., P.E. Leave a Comment

Steel Hydrogen Embrittlement

Steel Hydrogen Embrittlement

One failure mechanism that I’m frequently asked about is hydrogen embrittlement of carbon and low-alloy steel. So, in this article I’ll discuss that topic.

Hydrogen embrittlement is the result of the absorption of hydrogen by susceptible metals resulting in the loss of ductility and reduction of load bearing capability. Sustained stress on an embrittled material can result in cracking and fracture at stresses less than the metal’s yield strength.

Embrittlement process

Hydrogen can be absorbed into a metal and diffuse through the grains. This can occur at room temperature and elevated temperatures. The absorbed hydrogen, present as atomic or molecular hydrogen, combine to form small bubbles at metal grain boundaries.

The bubbles build pressure between the metal grains. The pressure can increase to levels where the metal has reduced ductility and enables cracking at stresses lower than a metal’s yield strength. The cracking is intergranular, which means the cracks grow along a metal’s grain boundaries.

Example

An example of failure due to hydrogen embrittlement is shown for a fractured fastener that consisted of zinc plated steel. The fastener fractured about three days after it was installed. There are tensile stresses along the length of an installed fastener.

The right image shows a scanning electron microscope image of the fracture surface. The rocky appearance of the fracture surface is indicative of cracking along the metal’s grain boundaries. The steel became embrittled during the zinc electroplating process.

Scanning electron microscope image of the fracture surface
Higher magnification scanning electron microscope image of the fracture surface

Requirements for hydrogen embrittlement

Three requirements must be met for hydrogen embrittlement to be a concern:

  • A susceptible material
  • Exposure to an environment that contains hydrogen
  • Sustained tensile stress

Residual stress can contribute to the total tensile stress on a component and in some cases is sufficient to cause cracking.

High-strength steels are susceptible to hydrogen embrittlement. This includes steel with tensile strength greater than 140 ksi (1,000 MPa) or hardness greater than 30 HRC.

Hydrogen absorption can occur during various manufacturing and assembly operations or during component use. Processes that result in component exposure to hydrogen include phosphating, acid pickling, and electroplating. During use, hydrogen exposure can occur during metal corrosion, chemical reactions of metal with acids, or with other chemicals notably hydrogen sulfide in sulfide stress cracking. 

Preventing hydrogen embrittlement

Steps can be taken to avoid hydrogen embrittlement of carbon and low-alloy steel components exposed to hydrogen. They include:

  • Bake the metal after processes that involve exposure to hydrogen
  • Use lower strength steels
  • Reduce residual and applied stress

The baking temperature is often 190 – 220 °C and the time depends on the steel strength. During the bake hydrogen diffuses out of the metal. The bake process must be performed within a few hours after the hydrogen exposure occurs. The bake will not be effective if too much time elapses between the hydrogen exposure and the bake. ASTM standards that specify the baking process to use are available.

Using lower strength steels, reducing residual stress, and reducing the applied stress may be the best options when hydrogen absorption occurs while a component is in service. One way to reduce residual stress is to select an alloy that enables using a less aggressive quench during the strengthening heat treatment. Applied stress can be reduced by increasing a component’s cross-section.

Selection and control

Hydrogen embrittlement and its causes are well-understood, and several approaches exist to prevent its occurrence. As discussed in a recent article, selection and control are important for reliability.

When designing components for which hydrogen embrittlement is a concern, it’s important to test the components to verify that they are not embrittled after fabrication is complete and/or that they do not become embrittled during use. It’s also important to verify that the people responsible for surface finishing high-strength steel follow proper procedures to prevent hydrogen embrittlement.

Filed Under: Articles, Metals Engineering and Product Reliability, on Product Reliability

About Michael Pfeifer, Ph.D., P.E.

I’m a metallurgical engineer with over 25 years of experience working on product design, quality improvement, failure analysis, and root cause analysis.

Many people think of metallurgists only for failure analysis of component failures. While I do that, I also help design teams with component design. I help select alloys and coatings that have the corrosion, fatigue, wear, and creep properties needed to meet reliability requirements. Oftentimes, trade-offs are required between component form and materials to optimize a design for performance, reliability, and cost. I help do that, too.

« Does Improved Reliability Translate to a Safer Plant?
Reactive Chemicals »

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Headshot of Michael PfeiferArticles by Michael Pfeifer, Ph.D., P.E.
in the Metals Engineering and Product Reliability article series

Join Accendo

Receive information and updates about articles and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Posts

  • Gremlins today
  • The Power of Vision in Leadership and Organizational Success
  • 3 Types of MTBF Stories
  • ALT: An in Depth Description
  • Project Email Economics

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy