Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Podcasts
  • Courses
    • Your Courses
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
  • Barringer Process Reliability Introduction Course Landing Page
  • Upcoming Live Events
You are here: Home / Articles / Sources of Reliability Data

by Fred Schenkelberg 2 Comments

Sources of Reliability Data

Sources of Reliability Data

We rely on data to make decisions, to reveal patterns or trends, to learn about our systems and world. Data has many forms and sources. Reliability data may provide what will fail and/or when a device will fail.

Data is rarely complete, accurate or without errors. Get used to it. Finding the sources of errors and creating systems to gather data helps. I find the first time trying to track down the data and do a little analysis is often the hardest part.

Ireson, et. al., (Handbook of Reliability Engineering and Management) lists 10 sources for reliability data.

1. Research tests — often done on new materials or processes to characterize potential reliability failure mechanisms. Some of the results are published in technical conference proceedings or journals. Encourage your research and development teams to conduct these reliability tests as it provides a potential failure mechanism model that will save time later when working toward product launch.

2. Prototype tests — this includes those prototypes that are not specifically in a reliability related evaluation. Any failure is information that is useful when assessing a design’s reliability. Prototypes are expensive and have limited quantities, thus focusing the testing to highest risk areas may generate the most value. Another use is to discover failure mechanisms (HALT is an example of a discovery test).

3. Environmental tests — products have to work in the environment and under use conditions as expected by the customer. Weather (temperature, humidity, rain, salt fog, etc.) and use (cycles/day, load profile, user interface visibility, etc.) can be a long list of specific stress tests. Often these tests are done in sequences on prototypes to minimize the number of units needed for testing. Early tests are non-destructive and have minimum effect or damage related to later stresses in the sequence. For example using UV to check on color changes over time, then doing power line testing to check power supply response to expected variations in the supply of electricity.

4. Development tests — these can take many forms. Generally, these are to answer a question for the development team. For reliability it is often, will this work long enough? These tests should focus the stresses to excite specific failure mechanisms. When done well, these are very designed accelerated life tests. Yet, any testing done during development reveals information about what may fail.

5. Qualification tests — once the development is nearing completion, it’s time to make sure it really works. These tests generally use adequate sample sizes and/or a full range of stresses. Generally, not always, the test design is to show a minimum reliability using a no failure test (minimized sample size and test duration). Tests with failures provide more statistical power and more information and are not common.

6. Reliability growth tests — useful for software and for complex (fail relative often) systems. Generally using the product as intended with as close to use conditions as possible (or very controlled and well understood accelerated conditions), then plotting the cumulative number of fault over time to determine is sufficient improvement in the design has occurred.

7. Production assessment tests — other than individually crafted products the design is destined to be realized in a production facility. As a young manufacturing engineer in a plant, I quickly realized that manufacturing can only make a product less reliable — never (very rarely) as good as the design. The supply chain and production processes introduce variability and potential component and material defects. Again best done to evaluate specific failure mechanisms (or discover failure mechanisms) along with long-term reliability performance evaluation.

8. Acceptance tests — some customers specify a set of evaluations performed prior to agreeing to receive the product. These tests can range from a demonstration to long-term reliability performance. Best to not incur surprises at this stage due to fully understanding the range of potential failure earlier in the program.

9. Tests on purchased items — this is a check on the supply chain. Rarely done, in my experience, unless there is a reason to perform the check as it is often expensive and may cause component damage. Sometimes a necessary evil. Another situation is buying a complete system that you are going to resell under your brand — might be due diligence in this case. A third situation is sampling items for testing to maintain a modicum of monitoring in place.

10. Tests on failed items — At all stages doing a complete failure analysis and testing to validate the FA is essential. Determine the root cause and prove the solution.

And, I would add feedback on failures gathered along the product lifecycle, including

11. Defect tracking during development — the database of discovered failures/faults provide a rich source of reliability data. This is more on the what could fail and on potential failure mechanisms, than able to answer the ‘when will it fail?’ question.

12. Defect tracking during manufacturing — like in development, here the focus is on supply chain and manufacturing variability and the resulting impact on product performance.

13. Call center data — very noisy information as the goal of the call center team is to assist customers, not to start the failure analysis process. With a little work, the call center data can provide insights on the failure symptoms customer are experiencing. Plus there is the ability to request the customer return the product for further study. The data alone would take careful screening to understand.

14. Product returns — This is by far the best data on how your product reliability is doing. Even no trouble found returns provide information is you also consider the overall customer experience. Time to failure, symptoms, and root cause improve this data. Too late for this program unless continuous improve is of value. Very useful for similar products in development.

15. Customer satisfaction surveys — not done in all organization or industries, yet feedback from your customers is often a true indicator of satisfaction with product reliability. Work with your customer facing part of your organization to get better reliability related information.

Summary

There is potentially a lot of data. Not all of it easy to retrieve or use, yet all with information useful to guide the creation and maintenance of reliable products.


Related:

Field Industry and Public Failure Data (article)

Types of Failure Data (article)

Reliability Block Diagrams Overview and Value (article)

 

Filed Under: Articles, CRE Preparation Notes, Reliability Modeling and Predictions Tagged With: Data analysis, Field data analysis

About Fred Schenkelberg

I am the reliability expert at FMS Reliability, a reliability engineering and management consulting firm I founded in 2004. I left Hewlett Packard (HP)’s Reliability Team, where I helped create a culture of reliability across the corporation, to assist other organizations.

« Perfect Reliability
To Change the Reliability Culture »

Comments

  1. Fred Schenkelberg says

    July 7, 2016 at 2:19 PM

    thanks for the comments

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

CRE Preparation Notes

Article by Fred Schenkelberg

Join Accendo

Join our members-only community for full access to exclusive eBooks, webinars, training, and more.

It’s free and only takes a minute.

Get Full Site Access

Not ready to join?
Stay current on new articles, podcasts, webinars, courses and more added to the Accendo Reliability website each week.
No membership required to subscribe.

[popup type="" link_text="Get Weekly Email Updates" link_class="button" ][display_form id=266][/popup]

  • CRE Preparation Notes
  • CRE Prep
  • Reliability Management
  • Probability and Statistics for Reliability
  • Reliability in Design and Development
  • Reliability Modeling and Predictions
  • Reliability Testing
  • Maintainability and Availability
  • Data Collection and Use

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy