Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Podcasts
  • Courses
    • Your Courses
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
  • Barringer Process Reliability Introduction Course Landing Page
  • Upcoming Live Events
You are here: Home / Articles / How Should the Sample Size be Selected for an X-bar Chart? (Part I)

by Steven Wachs Leave a Comment

How Should the Sample Size be Selected for an X-bar Chart? (Part I)

How Should the Sample Size be Selected for an X-bar Chart? (Part I)

The purpose of control charts is to detect significant process changes when they occur.  In general, charts that display averages of data/measurements (X-bar charts) are more useful than charts of individual data points or measurements.  Charts of individuals are not nearly as sensitive as charts of averages at detecting process changes quickly.  X-bar charts are far superior at detecting process shifts in a timely manner, and the sample size is a crucial element in ensuring that appropriate chart signals are produced.

Often, the sample size is selected without much thought.  A sample size of 5 seems to be a common choice.  If the sample size is not large enough, then meaningful process shifts may go undetected.  On the other hand, if the sample size is too large, then chart signals may be produced from insignificant process shifts.  The key is to specify a sample size so that significant shifts (from a practical perspective) are detected with high probability and that insignificant shifts are unlikely to produce a signal.

To understand the concept, it is useful to review the impact that averaging data has on variation.  The graphic below compares the distribution of individual values with the distributions of averages of various sample sizes.

We see that as the sample size increases, the standard deviation of the distribution of averages decreases.  Specifically, the relationship below relates the standard deviation of averages to the standard deviation of individuals and the sample size:

$$ \displaystyle \sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}} $$

On an x-bar control chart, this idea is reflected by control limits getting tighter as the sample size increases.

Now, consider a process that is stable and under statistical control.  This curve is represented by the blue curve on the graphic below.  Suppose we desire that if the process average shifts by a specified amount (such that it is represented by the red curve below), we would want to obtain a chart signal with very high probability.

The question is, how likely is it that we will detect the process shift, if in fact the process shifts from the blue curve to the red curve?  We consider this question for the 4 cases shown in the above graphic.

In the top set of distributions, we are working with individuals.  The control limits for the blue process are represented by the dashed vertical lines.  Following the process shift, we will sample from the red curve.  Note that most of the red curve still falls inside the control limits for the blue curve.  This means that we are very unlikely to see a signal on our chart for the shift indicated.

Now consider, the second set of distributions.  They represent the case where we are using an x-bar chart with sample size = 2.  A shift of the same size is shown.  Here, the process curves are tighter since they represent averages (with n = 2).  While things are better than the first case, there is still a significant overlap between these distributions and it is still not very likely that we will detect the shift quickly.

The case with n = 5 (the third case) is better yet, but still not good enough.  We want to be able to detect the shift with high probability.

Finally, with n = 12 (the last case), we see that for the same size shift, the two distributions are practically separate.  In other words, if the shift occurs, our next sample average will come from the red curve and it will almost certainly be outside of the control limits (based on the blue curve).

Although the above graphics allow us to understand how sample size affects chart sensitivity (the ability to detect desired process changes), a formula is typically used to compute the necessary sample size for a given application.  The sample size is a function of the desired sensitivity, the process standard deviation, and the willingness to tolerate type II errors (where the process shifts but the chart fails to detect the shift).

The formula and its application will be discussed in the next article.

[display_form id=419]

Filed Under: Articles, Integral Concepts, on Tools & Techniques

About Steven Wachs

Steven Wachs has 25 years of wide-ranging industry experience in both technical and management positions. Steve has worked as a statistician at Ford Motor Company where he has extensive experience in the development of statistical models, reliability analysis, designed experimentation, and statistical process control.

« The Informative Run Chart
Nonparametric Forecasts From Left-Censored Data »

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Articles by Steven Wachs, Integral Concepts
in the Integral Concepts article series

Join Accendo

Receive information and updates about articles and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Articles

  • Gremlins today
  • The Power of Vision in Leadership and Organizational Success
  • 3 Types of MTBF Stories
  • ALT: An in Depth Description
  • Project Email Economics

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy