Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Podcasts
  • Courses
    • Your Courses
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
  • Barringer Process Reliability Introduction Course Landing Page
  • Upcoming Live Events
You are here: Home / Articles / Paired-Comparison Hypothesis Tests

by Fred Schenkelberg 1 Comment

Paired-Comparison Hypothesis Tests

Paired-Comparison Hypothesis Tests

Hypothesis testing previously discussed (link to past posts) generally considered samples from two populations. Maybe the experiments explored design changes, different component vendors, or two groups of customers. Occasionally you may find data that has some relationship between the samples, or where the samples are from the same population. Paired (or matched) data involves samples that are related in some meaningful way.

If we wanted to compare the diagnostic capability of two shops, for example, we could use the same set of bikes and ask both shops to inspect and provide an estimate for repairs. The two shops inspect the same samples, thus the samples are paired. Another example involves very similar samples, separated during testing for exposure to different conditions. The idea is each sample has a partner sample (or is the same sample) in the two sets of samples or measurements under consideration.

Test Setup

The null hypothesis for a paired t-test is Ho: μd = Do.

A paired t-test is often a two-sided test, which looks for a difference where one sample is higher or lower than the other by Do. You can also look for differences that are less than or greater than zero, or some other value. The three alternate hypothesis become:

μd > Do
μd < Do
μd ≠ Do

Note: we are assuming the differences are normally distributed. If the differences are not normally distributed use the binomial hypothesis test or the Wilcoxon signed rank test instead. d is the difference in measurements or readings of the paired samples. d-bar is the average of the differences, and sd is the standard deviation of the differences. The degrees of freedom used to determine the critical value is df = n-1. The critical value is tα/2,df where (1 – α)100% is the type I confidence level. We calculate the test statistic using

$$ \large\displaystyle t=\frac{\bar{d}-{{D}_{o}}}{{}^{{{s}_{d}}}\!\!\diagup\!\!{}_{\sqrt{n}}\;}$$

The degrees of freedom used to determine the critical value is df = n-1. The critical value (or rejection region) for the three tests given a (1-α)100% confidence level becomes:

Reject Ho if t > tα,df
Reject Ho if t < tα,df
Reject Ho if |t| > tα/2,df

Let’s say we have two technicians measuring the diameter of bicycle fork tubes with calipers. We suspect the measurement method is different between the two technicians and want to learn if it is significant. Therefore, using five tubes we asked each technician to measure the tube diameter. The data follows:

Sample Technician A Technician B Difference (d)
1 3.125 3.110 0,015
2 3.120 3.095 0.025
3 3.135 3.115 0.020
4 3.130 3.120 0.010
5 3.125 3.125 0

The average of the differences d-bar is 0.014 and the standard deviation, sd = 0.0096. The five samples, n = 5, provides degrees-of-freedom of df = n-1 = 5-1 = 4.

The critical value is t0.025, 4 = 2.776 given an α = 0.05 or a 95% confidence level.

The test statistic is

$$ \large\displaystyle t=\frac{\bar{d}-{{D}_{o}}}{{}^{{{s}_{d}}}\!\!\diagup\!\!{}_{\sqrt{n}}\;}=\frac{0.014-0}{{}^{0.0096}\!\!\diagup\!\!{}_{\sqrt{5}}\;}=3.256$$

Since 3.256 is larger than 2.776 and in the rejection region, the null hypothesis is rejected. This means there is convincing evidence the two technicians do not measure the fork tubes and arrive at the same results.


Related:

Hypothesis Test Selection (article)

Hypothesis un-equal variance (article)

Equal Variance Hypothesis (article)

 

Filed Under: Articles, CRE Preparation Notes, Probability and Statistics for Reliability Tagged With: Hypothesis testing

About Fred Schenkelberg

I am the reliability expert at FMS Reliability, a reliability engineering and management consulting firm I founded in 2004. I left Hewlett Packard (HP)’s Reliability Team, where I helped create a culture of reliability across the corporation, to assist other organizations.

« Influence and Reliability
Equal Variance Hypothesis »

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

CRE Preparation Notes

Article by Fred Schenkelberg

Join Accendo

Join our members-only community for full access to exclusive eBooks, webinars, training, and more.

It’s free and only takes a minute.

Get Full Site Access

Not ready to join?
Stay current on new articles, podcasts, webinars, courses and more added to the Accendo Reliability website each week.
No membership required to subscribe.

[popup type="" link_text="Get Weekly Email Updates" link_class="button" ][display_form id=266][/popup]

  • CRE Preparation Notes
  • CRE Prep
  • Reliability Management
  • Probability and Statistics for Reliability
  • Reliability in Design and Development
  • Reliability Modeling and Predictions
  • Reliability Testing
  • Maintainability and Availability
  • Data Collection and Use

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy