Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Podcasts
  • Courses
    • Your Courses
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
  • Barringer Process Reliability Introduction Course Landing Page
  • Upcoming Live Events
You are here: Home / Articles / Myth Busting 25: We need engineers to do RCM

by James Reyes-Picknell Leave a Comment

Myth Busting 25: We need engineers to do RCM

Myth Busting 25: We need engineers to do RCM

Reliability Centered Maintenance (RCM) is method for determining the most appropriate failure and consequence management strategies. It deals with your physical assets in your current operating context. The first four questions in the RCM method, are defined in standard, SAE JA-1011, “Evaluation Criteria for Reliability Centered Maintenance (RCM) Processes.” They utilize the time proven engineering method, Failure Modes and Effects Analysis (FMEA).

RCM uses FMEA to get to the level of failure modes and their causes. It identifies failure mechanisms. Few will understand all of those, so Engineering knowledge is beneficial. But if you don’t have engineers, you can still do it.

Knowledge and Experience

The knowledge needed to perform RCM effectively includes asset design and construction, how it is used, and the performance expected. Operators determine how the asset is actually used. They may or may not have technical backgrounds. They need to understand the production process, the asset’s role in it, and how to get it to perform that role. The asset itself and how it works (on the inside) may be an unknown to the operators, but not maintainers.

Most of us reading this article will know how to drive a car safely. We need to know some basic functionality and how to use it correctly, but we don’t need to know how it works. For example, we need to know how to accelerate and stop, steer, signal and park. Yet we don’t need to know how the brakes work, how to accelerator works, how the steering works or how the signals work. We may do some very basic maintenance like cleaning, checking tire wear, and checking fluid levels. Yet most of us leave the rest of the work to our mechanics. They are our maintainers, and we trust them to take care of those systems for us, and to tell us if anything needs extra attention.

Your plant

Plant and mobile equipment operators don’t really need to know how the machinery works. They do need to know how to use it to get the systems they operate to perform. Maintainers know how the machinery and systems work in inside. Often, they do not know how they are used in a production system. For example, your maintainers in a refinery may know how the bottoms pump works, but not how the distillation process works.

RCM requires both sets of knowledge. The first question in RCM is about functions – something that only the operators can truly answer. When we look at failure modes and what to do about them, we need the maintainer’s knowledge. Describing effects of failure modes requires both. Sometimes the failure cannot be prevented nor predicted. We then get out of the realm of the maintainer and may get into the realm of the designer. The timing of proactive tasks can be set to minimize or eliminate operational disruption.  Again, we need operational knowledge to set that timing properly.

Who has the knowledge?

The main bodies of knowledge and experience need to come from operators and maintainers. Even for newly designed systems with little or no operating history, operators and maintainers of similar systems know enough for the analysis. Engineers, are very helpful with their asset specific knowledge, their ability with the math when determining task frequencies and their passion for digging into details. Even the most diligent of maintainers can miss that. So engineers add value.

But do you need engineers for RCM? The answer is “no but”. The main contributors are operators and maintainers. Engineers are helpful but even without them, the analyses can still be thorough and rigorous. The facilitator is the real key to that.

How many engineers?

Should you trust your RCM work to engineers alone? No. Unless your engineer has both operational and maintenance experience, they can come up short on the insights needed in doing RCM properly. Occasionally I see RCM left in the hands of engineers to perform. In my opinion that is a mistake, particularly if using more junior engineers. Their lack of practical experience will show up as either superficial analysis, or excessively detailed analysis. Both result from a lack of practical application knowledge. In my experience, any RCM analysis performed by only one person (regardless of background) will likely be flawed.

Can you use multiple engineers? Yes. Ideally they will have complimentary knowledge. For example a maintenance engineer coupled with a process engineer could do a very good analysis, but they would still benefit from the hands on experience of maintainers and operators. You can’t get around it – that field experience is the most valuable contributor in an RCM analysis.

Can you have too many engineers involved? Yes. I’ve seen this happen where engineers that had similar expertise. Perhaps personalities played a role here, but they had a bit of an intellectual rivalry. In their bids to out-do each other, they came up with increasingly rare, yet plausible failure modes, almost all of which resulted in Run-to-failure decisions. In that case we did have experienced maintainers and operators in the analysis team, they could see where it was headed long before we finished identifying all the exotic failure modes, but we were powerless to stop it.

Both engineers were respected, considered experts, and no one dared second guess them. The analysis took a few days longer than necessary, was academically brilliant, yet little real value was added. I’m always careful with my RCM team selection making sure we have a balance of knowledge and expertise at the table and little to no duplication or overlap.

Conclusion

So in conclusion, you benefit from engineers in RCM, but the real critical information comes from the maintainers and the operators. The facilitator ensures the needed information is used properly and can even identify where extra help may be needed.

Filed Under: Articles, Conscious Asset, on Maintenance Reliability

About James Reyes-Picknell

James is the best-selling author of “Uptime – Strategies for Excellence in Maintenance Management”, now in its 3rd edition, co-author of “Reliability Centered Maintenance – Re-engineered”, co-founder and Principal Consultant of Conscious Asset.

He is a Mechanical Engineer, graduate of the University of Toronto and has more than 44 years working in Operations, Maintenance, Reliability and Asset Management.

« Discovering what Inherent Reliability is all about is as easy as watching a couple of raccoons!
Now You Understand Your Risks: What’s Next? »

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Conscious Asset series

Article by James Reyes-Picknell

Join Accendo

Receive information and updates about articles and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Posts

  • Gremlins today
  • The Power of Vision in Leadership and Organizational Success
  • 3 Types of MTBF Stories
  • ALT: An in Depth Description
  • Project Email Economics

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy