Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Podcasts
  • Courses
    • Your Courses
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
  • Barringer Process Reliability Introduction Course Landing Page
  • Upcoming Live Events
You are here: Home / Articles / on Product Reliability / Apex Ridge / MTBF of a Human

by Adam Bahret 3 Comments

MTBF of a Human

MTBF of a Human
“What’s the MTBF of a Human?” That’s a bit of a strange question? I ask this question in my Reliability 101 course. Why ask such a weird question? I’ll tell you why. Because MTBF is the worst, most confusing, crappy metric used in the reliability discipline. Ok maybe that is a smidge harsh, it does have good intentions. But the amount of damage that has been done by the misunderstanding it has caused is horrendous. MTBF stands for “Mean Time Between Failure.” It is the inverse of failure rate. An MTBF of 100,000 hrs/failure is a failure rate of 1/100,000 fails/hr = .00001 fails/hr. Those are numbers, what does that look like in operation? Does it mean… The product lasts 100,000 hrs before failing? Half the population fails by 100,000 hours? Wait a minute! our product is only supposed to last three years with a 50% duty cycle. That’s 13,140 hrs of use. Why would we have an MTBF goal of 100,000 hours? It can’t even run that long if everything goes perfectly. Because of all this confusion what occurs is everyone makes up their own definition of what MTBF is. It’s usually one of the first two I listed, how long it runs or when half have failed. No one wants to sound stupid and ask what it means, so we all just pretend. This is the moral of “The Emperor’s New Clothes. ” We’ll I’m here to tell you that that dude is buck naked. That is why I ask the “MTBF of a Human” question. Because it forces a harsh realization when I give the correct answer. The answer is “At least 800 years.” The beauty is that the shared confusion in the room brings a sigh of relief as everyone realizes they weren’t alone in not knowing. “Dude go put some clothes on, you’re kinda freaking us out, and there are kids here!” Ok so I gave the answer. The MTBF of a human is 800 years. That’s actually very conservative. In your current lifestyle it is probably more like 2,000 years. A 800 year MTBF is more indicative of living in some very harsh old world conditions. Maybe a coal mining town in the 1700’s. The group’s surprise that a human can have an 800 year MTBF brings about a new interest in hearing some MTBF 101. Ok here we go….. When MTBF is used as a metric to describe a product’s reliability during it’s use life there are three assumptions.
  1. The first is that no “Infant Mortality” (i.e. quality failures) are included in this metric.
  2. The second is that no wear-out ( i.e. end of life) failures are included in this metric.
  3. The third is failures during use life occur randomly. So in any given moment during use life a failure is just as likely to occur as at any other moment. For a product with a ten year life this means that a random failure is just as likely to occur at three months of age as it is at seven years of age.
What does that mean for our human example? Let’s frame the question in a meaningful way. The individual asking “What is the MTBF of a human?” is the owner of a coal mine in an isolated 1700’s mid west town. Every person in that town works in the coal mine. The owner wants to know how often he can expect people to not show up to work because they are sick or injured, oh yeah and the sickness or injury “had better a killed them dead, if theys not showing up to work.” He doesn’t believe in sick days. He doesn’t’ care about children or retired people either. They have nothing to do with the coal mine’s productivity. The coal mine reliability engineer does a quick calculation and tells the owner that the miners can be expected to have an MTBF of 800 years. Of course the owner wants to know what that means in practical terms. The reliability engineer explains that he can expect that over an 800 year period that 62.3% of the work population will not show up to work due to death from a random illness or injury. The owner still isn’t sure what that means day to day for his operation. The engineer puts that MTBF into a reliability percentage equation to find the reliability for a one year period, which is a more useful number for the owner. “How many employees can we expect to not show up due to death in a one year period? The answer is we can expect a reliability of 99.875% for the work population over a one year period. This translates to 13 deaths for a work population of 10,000 employees. See what I mean about the 800 year MTBF for a human being very conservative. Could you imagine a modern day university with 10,000 students having 13 students die each year from accident or illness? I’m pretty sure someone would be looking into what is going on at that campus. Let’s break down how we got from an 800 year MTBF to a probability that in any given year 13 employees may die. Below is the equation we will use. It is a derivative of the Weibull equation with the assumption that we are dealing with a constant failure rate and no offsets.
Assumptions:
  1. We do not include children who die (<13 years of age). These are infant mortality. In the production world we consider these to be quality defect and not a characteristic of the design’s reliability.
  2. We don’t include retirees. In production these are items that are to be removed from service (retired). The manufacturer has predicted that wear out failure modes are going to become dominant at some point and that the promised use reliability will no longer be up held.
  3. We are not repairing systems
  4. Units that fail are being immediately replaced with new units that are past the infant mortality stage so the population is a consistent number.
I believe the big shift in understanding what MTBF means is realizing that “wear out” failures do not contribute to it. When an item approaches wear out it is effectively removed from the MTBF population and replaced with a fresh unit. It never failed. A graphical way to look at this is the “bathtub curve”, below. It is commonly referred to for demonstration of failure rate over life for a population. You can clearly see the three life phases for the population.
There is an infant mortality phase driven by quality defects. This failure rate quickly falls as the defective units fall out of the population and are replaced with new units. We then have the useful life where there is a constant failure rate. The height of this line “failure rate” is dictated by the MTBF. A higher MTBF the lower the line. Remember failure rate is the inverse of MTBF. The third phase is “wear out” where predictable failures driven by accumulated stress begin to dominate the population’s behavior. For the user it is recommended to remove the units at this point and replace them with new ones. Effectively we are creating a scenario where the customers experience is a flat line with a small wave (quality defect introduction of replacement units) in it that goes on forever. The wave can be reduced to almost nothing if quality practices are improved and products are quality screened to defective product never leaves the factory. Why do I dislike MTBF so much. It’s just to confusing unless you keep in mind all fo those assumptions. It’s valuable for statistics because it is population characteristic that is easily transferable between equations. But for general discussion with individuals not using it for statistics, designers, marketing, project managers, it creates more confusion than clarity. It is just better to discuss product performance in % reliability, failure rate, or availability. -Adam

Filed Under: Apex Ridge, Articles, on Product Reliability

About Adam Bahret

I am a Reliability engineer with over 20 years of experience in mechanical and electrical systems in many industries. I founded Apex Ridge Reliability as a firm to assist technology companies with the critical reliability steps in their product development programs and organizational culture.

« Fear, Resilience & Failing Up
What is Process Capability Analysis? Really. »

Comments

  1. J.L.K. says

    April 13, 2020 at 2:33 PM

    Bit confused here. Your problem doesn’t seem to be with the MTBF, but with the use of the exponential distribution as a lifetime distribution.

    Reply
  2. Michal says

    April 14, 2020 at 5:57 AM

    Nice and funny article. From which statistic did you get the value 800/2000?

    Reply
  3. Jacques says

    October 4, 2020 at 1:01 PM

    “Death is just a technical problem ” human have a good MTBF. This article could have been put as a note in Y.Harari “Homo Deus” book.

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Article by Adam Bahret
in the Apex Ridge series

Join Accendo

Receive information and updates about articles and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Articles

  • Gremlins today
  • The Power of Vision in Leadership and Organizational Success
  • 3 Types of MTBF Stories
  • ALT: An in Depth Description
  • Project Email Economics

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy