Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Podcasts
  • Courses
    • Your Courses
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
  • Barringer Process Reliability Introduction Course Landing Page
  • Upcoming Live Events
You are here: Home / Articles / Modelling and Simulation

by Doug Lehr Leave a Comment

Modelling and Simulation

Modelling and Simulation

A high-pressure packer for use in 9 5/8”, thick-walled, P-110 casing is being developed for a well barrier application. It is based on a legacy configuration. Is it a candidate for simulation?

The modelling of completion equipment begins when a component is developed using 3D CAD software. The engineer selects component geometry based on application constraints, initial calculations, a basis of design document, etc. After modelling all components in the configuration, these models are merged to create the assembly model.

Simulation is then performed on the models to study their response to inputs. Finite elements analysis (FEA) software is used to study a component’s “localized” response (e.g., stress in a fillet) to a range of combined loading inputs. Computational flow dynamics (CFD) software can be used to simulate the response of an orifice over a range of fluid flowrates. And nonlinear analysis software can be used to simulate the viscoelastic response of a rubber component to a force input over time.

Simulation requires expensive software and computing systems, experts who can perform the simulations, or the use of 3rd parties. Simulation is not always required to establish component or assembly response to inputs, but some reasons for conducting simulation are:

  • Regulatory requirements.
  • Complex loading scenarios.
  • Industry product standard requirements.
  • The equipment is for use in a critical application.
  • Investigation of nonlinear response to inputs (rubber packing elements).
  • Configuration maturity: Is the TRL high (mature, proven) or low (immature, unknown)?

The answer to the question posed at the beginning of this article is that the high-pressure packer should be further analyzed using simulation if the TRL is low, or if any of the other bullets apply. If the decision is YES, then all simulation must be conducted early in the project so that any necessary improvements can be assessed as part of the laboratory testing program. 

TRUTH: Simulation must be conducted when the highest equipment reliability is needed.

This is the 8th in a series of 10 articles on critical equipment design for offshore completions.

  1. Critical Equipment Fundamentals
  2. Technology Readiness Level (TRL)
  3. Materials and Design Risk
  4. Temperature Deration
  5. Design for Reliability (DfR)
  6. Using Industry Standards in Design
  7. Factors of Safety and Load Factors
  8. Modelling and Simulation
  9. FMEA Improves the Bottom Line
  10. Lab Testing Programs

 

Filed Under: Articles, Equipment Risk and Reliability in Downhole Applications, on Risk & Safety

About Doug Lehr

Doug Lehr is the Founder and Principal of Integris Technology Services LLC. He has over 40 years of experience in the development of downhole tools for oil and gas wells and has built a track record of success in technical management, innovation, and industry leadership.

« Name that Failure Pattern (3)…
What is a CUSUM Chart and When Should I Use One? »

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Articles by Doug Lehr, P.E., Founder and Principal, Integris Technology
in the Equipment Risk and Reliability in Downhole Applications series

Join Accendo

Receive information and updates about articles and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Articles

  • Gremlins today
  • The Power of Vision in Leadership and Organizational Success
  • 3 Types of MTBF Stories
  • ALT: An in Depth Description
  • Project Email Economics

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy