Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Podcasts
  • Courses
    • Your Courses
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
  • Barringer Process Reliability Introduction Course Landing Page
  • Upcoming Live Events
You are here: Home / Articles / Hypothesis Test Selection

by Fred Schenkelberg 2 Comments

Hypothesis Test Selection

Hypothesis Test Selection

Over the past few weeks, we have explored about 8 different hypothesis test formulas. There are more. So, how do you determine which test to perform? Well, that depends on the question you are trying to answer and the type of data you’re dealing with.

Types of Data

First, consider the type of data you have or will gather for the hypothesis test. If the data is variables data then you probably will use something based on the normal distribution. There are tests based on other distributions, and these are not commonly explored with the CRE. Be careful to verify your data is normal or normal enough to work with a t-test before making conclusions. Testing for normality is a subject of another post (to be written).

Sometimes the data is paired. Meaning the samples have some connection and are either treated differently. Like using different materials on the right and left shoes in a pair and asking people to wear the unique pairs when monitoring wear resistance during normal use. The shoes are the same design except for the one change in material and the people expose the paired shoes to the same stress. The paired t-test is the approach here.

If the data is discrete, then either binomial or Poisson are your friends. Binomial for proportions and on/off or pass/fail (Bernoulli Trials) type data. Poisson for counts of defects of faults, for example.

Types of Questions

Generally, we are interested in the mean for a comparison to a specification or known value. Sometimes we want to do a comparison of two population means. Another item of interest may be the exploration of changes in the spread of the population (variance).

For a complete study, beyond verifying the distribution of the data (normal, binomial, etc) we also either know the population variance or not. We also either consider the variances of two populations to be equal or not. In general, when comparing two populations check the variances to determine if they are equal or not, then test the means.

For example for variables data

If we know the population variance (which is not common, BTW) then we can use the Z-test. When we have to estimate the population variance from the sample, then use the t-test.

If we know the population or both populations variances there is no need to test if they are equal or not. When estimating variances from the sample we need to check as the t-test changes slightly when the variances are equal or not. When estimating the two population variances we can use the F-test for variances. When comparing a sample variance to a known population variance, the χ2 test works well.

When exploring two normal populations if the variances are equal us the pooled variance t-test, and when not equal then the Unequal variance t-test (of course).

Maybe a flow chart would be helpful –

There are many ways to test a hypothesis and each will depend on the data, the questions (hypothesis) and what is known or not known about the population and sample. Done well, you can create conclusions and make decisions. Done poorly you will have a number that may or may not be useful.

In the CRE, take care to determine which type of test first, then double check your calculations.


Related:

Paired-Comparison Hypothesis Tests (article)

Levene’s Test (article)

Hypothesis Tests for Variance Case I (article)

 

Filed Under: Articles, CRE Preparation Notes, Probability and Statistics for Reliability Tagged With: Hypothesis testing

About Fred Schenkelberg

I am the reliability expert at FMS Reliability, a reliability engineering and management consulting firm I founded in 2004. I left Hewlett Packard (HP)’s Reliability Team, where I helped create a culture of reliability across the corporation, to assist other organizations.

« Decision Focus
Reliability Maturity Matrix »

Comments

  1. Suprasad Amari says

    August 30, 2013 at 10:36 AM

    Fred, it’s excellent.
    You may also consider prodiving a more details on these tests. I will read your other posts related to this topic.

    Thanks
    Sup

    Reply
    • Fred Schenkelberg says

      August 30, 2013 at 3:01 PM

      Hi Sup,

      Glad you like the post and thanks for your kind words.

      Please do check out the other posts as they typically have a worked out example. I’m also exploring a more interactive approach, yet may have to move the site to make that happen. Sill exploring though.

      I know you know this material and if you’d like to contribute articles, that would be great. I’m sure those preparing for the CRE exam would appreciate a new voice once in a while.

      cheers,

      Fred

      Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

CRE Preparation Notes

Article by Fred Schenkelberg

Join Accendo

Join our members-only community for full access to exclusive eBooks, webinars, training, and more.

It’s free and only takes a minute.

Get Full Site Access

Not ready to join?
Stay current on new articles, podcasts, webinars, courses and more added to the Accendo Reliability website each week.
No membership required to subscribe.

[popup type="" link_text="Get Weekly Email Updates" link_class="button" ][display_form id=266][/popup]

  • CRE Preparation Notes
  • CRE Prep
  • Reliability Management
  • Probability and Statistics for Reliability
  • Reliability in Design and Development
  • Reliability Modeling and Predictions
  • Reliability Testing
  • Maintainability and Availability
  • Data Collection and Use

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy