Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Podcasts
  • Courses
    • Your Courses
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
  • Barringer Process Reliability Introduction Course Landing Page
  • Upcoming Live Events
You are here: Home / Articles / FMEA Q and A – FMEA Boundary Diagram

by Carl S. Carlson Leave a Comment

FMEA Q and A – FMEA Boundary Diagram

FMEA Q and A – FMEA Boundary Diagram

FMEA Q and A

In this Q and A article, a reader asks a challenging question about the linkage between FMEA boundary diagrams and Design FMEAs. There are many linkages between different elements of FMEAs, and this question/answer highlights one of the key linkages.

“In all affairs, it’s a healthy thing to hang a question mark on the thing you have long taken for granted.”
Bertrand Russell

Reader’s Question

How do “boundary diagrams” and “interface matrices” link to DFMEA? Could you please share experience regarding how using “boundary diagrams” and “interface matrices” help to improve FMEA process, and identify important functions?

Answer to Reader’s Question

An FMEA boundary diagram (also called an “FMEA block diagram”) is an essential input to new FMEA projects. It is a visual depiction of the entire system or design to show clearly the boundaries of the FMEA analysis (what is included and not included), the interfaces between the items, and other information that can help to depict the scope of the FMEA. The functions of the FMEA must be within the scope of the diagram, and include all of the interfaces that are identified.

An FMEA Interface Matrix, on the other hand, is an optional input to System or Subsystem FMEAs. It is a chart with the subsystems and/or components (depending on the scope of the FMEA) on both the vertical and horizontal axes, and clearly shows which interfaces must be considered in the analysis and the type of interface. It is done when the FMEA team wants to ensure that all of the various types of interfaces are included in the analysis, missing none. The functions of the FMEA must include all of the identified interfaces.

The key linkage between FMEA boundary/block diagram, FMEA interface matrix and Design FMEA is interfaces. Each interface in the FMEA boundary/block diagram and/or the FMEA interface matrix has a one-to-one linkage to a corresponding function in the Design FMEA.

For example, consider the fictional bicycle hand brake FMEA Block Diagram shown in Figure 1.

                               Figure 1

Let’s take the interface between 1.8.3 Brake Caliper and 1.8.4 Brake Pad. The interface is a bolt (physical connection). In the Design FMEA for the Hand Brake Subsystem, one of the functions could be “Interface Brake Caliper – Brake Pad: the bolt provides secure connection between brake caliper and brake pad, with no movement during all anticipated bicycle maneuvers.”

Next Article

Does a cause description need to be a design or manufacturing deficiency? Why? This is one of the more important questions to consider if you want to achieve quality FMEAs. In next week’s article, this question will be answered, along with essential information about identifying and applying “causes” in FMEAs.

[display_form id=415]

Filed Under: Articles, Inside FMEA, on Tools & Techniques

About Carl S. Carlson

Carl S. Carlson is a consultant and instructor in the areas of FMEA, reliability program planning and other reliability engineering disciplines, supporting over one hundred clients from a wide cross-section of industries. He has 35 years of experience in reliability testing, engineering, and management positions, including senior consultant with ReliaSoft Corporation, and senior manager for the Advanced Reliability Group at General Motors.

« Speaking the Same Maintenance & Reliability Language
What Can We Learn From Flint Michigan? »

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Articles by Carl Carlson
in the Inside FMEA series

[popup type="" link_text="Logo Info" ]

Information about FMEA Icon

Inside FMEA can be visually represented by a large tree, with roots, a solid trunk, branches, and leaves.

- The roots of the tree represent the philosophy and guiding principles for effective FMEAs.
- The solid trunk of the tree represents the fundamentals for all FMEAs.
- The branches represent the various FMEA applications.
- The leaves represent the valuable outcomes of FMEAs.
- This is intended to convey that each of the various FMEA applications have the same fundamentals and philosophical roots.

 

For example, the roots of the tree can represent following philosophy and guiding principles for effective FMEAs, such as:

1. Correct procedure         2. Lessons learned
3. Trained team                 4. Focus on prevention
5. Integrated with DFR    6. Skilled facilitation
7. Management support

The tree trunk represents the fundamentals of FMEA. All types of FMEA share common fundamentals, and these are essential to successful FMEA applications.

The tree branches can include the different types of FMEAs, including:

1. System FMEA         2. Design FMEA
3. Process FMEA        4. DRBFM
5. Hazard Analysis     6. RCM or Maintenance FMEA
7. Software FMEA      8. Other types of FMEA

The leaves of the tree branches represent individual FMEA projects, with a wide variety of FMEA scopes and results. [/popup]

Join Accendo

Receive information and updates about articles and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Posts

  • Gremlins today
  • The Power of Vision in Leadership and Organizational Success
  • 3 Types of MTBF Stories
  • ALT: An in Depth Description
  • Project Email Economics

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy