Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Podcasts
  • Courses
    • Your Courses
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
  • Barringer Process Reliability Introduction Course Landing Page
  • Upcoming Live Events
You are here: Home / Articles / FMEA Improves the Bottom Line

by Doug Lehr Leave a Comment

FMEA Improves the Bottom Line

FMEA Improves the Bottom Line

Refer to Article 7 for the expansion joint project. This project had progressed – perhaps beyond lab testing – before it was realized that the design could not meet ASME LRFD criteria. LRFD was considered necessary for reliability. The engineering manager had to consider a redesign. 

Missing the LRFD may be the result of not conducting a design failure modes and effects analysis (dFMEA). FMEA is a risk discovery process. Discovering design risks early in the project improves reliability and increases profitability by avoiding redesign and schedule delays.

A “check the box” dFMEA (CTB) may also explain the miss. A CTB FMEA is usually completed only to achieve the appearance of due diligence. A CTB FMEA delivers little value because typically:

  • One project member completes the entire FMEA template.
  • Controls reflect tribal knowledge, not documented practices.
  • Initial and final RPNs are all low risk (it’s a perfect product!).
  • There are few recommended actions.
  • The recommended actions are vague and un-auditable.
  • The template is submitted at the end of the project.

To realize value, FMEA must be conducted correctly. Here are some key elements of a value generating FMEA program:

  • FMEA program documents exist to promote consistency. 
  • A senior design SME provides FMEA program oversight.
  • A group of SMEs are trained to facilitate FMEAs.
  • FMEA requirements are modified for high TRLs.
  • FMEA is conducted with small teams of SMEs (4 to 8) who can anticipate design risks.
  • dFMEA is conducted by the end of design; pFMEA is conducted by the end of lab test. 
  • A document workflow exists for approval and implementation of recommended actions.
  • Metrics exist for measuring the effectiveness of the FMEA program.

Reduce design risk as much as possible using an FMEA program. And remember that a sustained focus on FMEA is a trait of an organizational culture that values high reliability. 

TRUTH: When conducted correctly, an FMEA delivers savings to the bottom line.

This is the 9th in a series of 10 articles on critical equipment design for offshore completions.

  1. Critical Equipment Fundamentals
  2. Technology Readiness Level (TRL)
  3. Materials and Design Risk
  4. Temperature Deration
  5. Design for Reliability (DfR)
  6. Using Industry Standards in Design
  7. Factors of Safety and Load Factors
  8. Modelling and Simulation
  9. FMEA Improves the Bottom Line
  10. Lab Testing Programs

Filed Under: Articles, Equipment Risk and Reliability in Downhole Applications, on Risk & Safety

About Doug Lehr

Doug Lehr is the Founder and Principal of Integris Technology Services LLC. He has over 40 years of experience in the development of downhole tools for oil and gas wells and has built a track record of success in technical management, innovation, and industry leadership.

« Part II: The 4 Basic Physical Failure Mechanisms of Component Failure: Fatigue & Overload
How do I Control a Process That Trends Naturally Due to Tool Wear? »

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Articles by Doug Lehr, P.E., Founder and Principal, Integris Technology
in the Equipment Risk and Reliability in Downhole Applications series

Join Accendo

Receive information and updates about articles and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Articles

  • Gremlins today
  • The Power of Vision in Leadership and Organizational Success
  • 3 Types of MTBF Stories
  • ALT: An in Depth Description
  • Project Email Economics

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy