Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Podcasts
  • Courses
    • Your Courses
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
  • Barringer Process Reliability Introduction Course Landing Page
  • Upcoming Live Events
You are here: Home / Articles / Fatigue

by Michael Pfeifer, Ph.D., P.E. 2 Comments

Fatigue

Fatigue

Fatigue is a common degradation and failure mechanism. It involves localized, permanent damage to metals exposed to cyclic stress. The stress can be uniaxial, bending, or torsional resulting from a variety of sources including an applied force, vibration, acceleration and deceleration, and differences in thermal expansion between mating components exposed to heating and cooling cycles. Localized means the damage is confined to a small portion of a component or joint.

The reason fatigue is sometimes unexpected is because the nominal stress acting on a component or joint is less than its yield strength. However, at a fatigue crack initiation site, the stress is greater than the nominal stress due to the presence of a stress concentration. More on this later.

Three requirements

There are three requirements for fatigue to occur:

  • Cyclic stress
  • The stress must be tensile
  • The local stress must exceed the metal’s yield strength

Three stages

Fracture due to fatigue consists of three stages:

  • Stage 1: Crack initiation. Microcracks less than 0.001 mm long form as the material cycles between the upper and lower stress. As the cycling continues the microcracks grow and coalesce, forming one or more larger cracks. 
  • Stage 2: Crack growth. The larger cracks grow into the material. As the cracks grow the nominal stress on the uncracked portion of the metal increases.
  • Stage 3: Finally, when a critical amount of the cross section has cracked, the remaining uncracked material cannot bear the load and fractures by overload.

Fracture surface

This is a diagram of a fracture surface where a crack started by fatigue. The crack started at the component’s surface. Once the crack formed it grew with each successive stress cycle. Finally, the crack grew so large that the uncracked material could not support the load, and it cracked during a single stress cycle.

In many cases, beachmarks are present on the fracture surface that can be seen visually or with a low-power microscope. Beachmarks start at the crack origin and expand in the direction of crack growth and are helpful for identifying the crack origin.

This scanning electron image shows the fracture surface of an aluminum component. The striations are a result of the fatigue crack growing with each stress cycle. Each striation formed during a stress cycle, thus indicating the amount the crack grew with each stress cycle. Not all fatigue failures have striations on the fracture surface.

Stress concentrations

Fatigue damage occurs even though the nominal stress on a metal is less than its yield strength. Stress concentrations cause an increase of the stress, resulting in a localized stress that exceeds the yield strength of the material. Stress concentrations include notches, identification markings, and metal defects (non-metallic inclusions, voids, laps).

It is possible for a fatigue crack to form in a metal with a smooth surface and no apparent stress concentrations. However, more cycles are required to initiate a crack in such a metal compared to the same metal with an apparent stress concentration.

Factors that influence fatigue life

The fatigue life of a component or joint is often expressed as the number of cycles to failure, which is equal to the sum of the number of cycles to initiate a crack and the number of cycles for the crack to grow to failure. In some cases, failure is when a crack grows to a pre-determined length, at which point the component or sub-assembly is removed from service. In other cases, failure is when a component or joint fails, and the failure is often unexpected.

Several design, material, and fabrication factors influence component and joint fatigue life, including the following:

  • Mechanical design features that are stress concentrators
  • Alloy strength
  • Non-metallic inclusions and manufacturing defects
  • Surface residual stress
  • Surface roughness
  • Metal fracture toughness

These factors and approaches to improve fatigue resistance will be discussed in more detail in future articles.

Filed Under: Articles, Metals Engineering and Product Reliability, on Product Reliability

About Michael Pfeifer, Ph.D., P.E.

I’m a metallurgical engineer with over 25 years of experience working on product design, quality improvement, failure analysis, and root cause analysis.

Many people think of metallurgists only for failure analysis of component failures. While I do that, I also help design teams with component design. I help select alloys and coatings that have the corrosion, fatigue, wear, and creep properties needed to meet reliability requirements. Oftentimes, trade-offs are required between component form and materials to optimize a design for performance, reliability, and cost. I help do that, too.

« Importance of Cultural Change in Transformations
Systematic Evaluation Of Reactive Chemical Hazards »

Comments

  1. Zaid Khan says

    August 19, 2023 at 3:09 AM

    Hi Michael,
    I enjoy reading your articles.I am a mechanical engineer who is involved in Failure analysis of components mainly associated with the oil and gas producing,refining and petrochemical industries.
    I will appreciate if I can laise with you
    From time to time re such failures.

    Reply
    • Michael Pfeifer says

      August 22, 2023 at 1:25 PM

      Hi Zaid,

      I’m glad to hear you like the articles. I’d be happy to help out, though it’ll have to be on a consulting basis.

      Mike

      Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Headshot of Michael PfeiferArticles by Michael Pfeifer, Ph.D., P.E.
in the Metals Engineering and Product Reliability article series

Join Accendo

Receive information and updates about articles and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Posts

  • Gremlins today
  • The Power of Vision in Leadership and Organizational Success
  • 3 Types of MTBF Stories
  • ALT: An in Depth Description
  • Project Email Economics

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy