Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Podcasts
  • Courses
    • Your Courses
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
  • Barringer Process Reliability Introduction Course Landing Page
  • Upcoming Live Events
You are here: Home / Articles / Establishing the Frequency of Failure Finding Maintenance Inspections

by James Kovacevic Leave a Comment

Establishing the Frequency of Failure Finding Maintenance Inspections

Preventing The Consequences Of A Hidden Failure From Devastating Your Organization.

Ever wonder how some of the worst industrial disasters occur?  It is usually the result of multiple failures.  Failure of the primary system and failure of the protective systems.   Ensuring the protective system(s) are not in a failed state should be of utmost importance to any organization.  But how often should we test the protective systems to ensure the required availability?

Establishing the correct frequencies of the inspection/ testing activities of these protective system(s) is critical to not only the success but safety and reputation of any organization.   Too infrequently and the organization is at risk of a major incident.  Too frequently, and the organization is subjected to excess planned downtime, an increased probability of maintenance induced failures and increased maintenance cost.
This article will continue the discussion on establishing the correct inspection frequency in a maintenance program.  There are three different approached to use, based on the type of maintenance being performed;

  • Time-Based Maintenance
  • On-Condition Maintenance
  • Failure Finding Maintenance

This article will focus on Failure Finding Maintenance.

What Are Protective Systems, Hidden Failures and Failure Finding Maintenance

A protective system or device is a system or device which is designed to protect and mitigate or reduce the consequences of failure.  These consequences may be safety, environmental or operational in nature.   These devices or systems are designed to;

  • Alert – to potential problem conditions (i.e. alarm)
  • Relieve – prevent failure conditions causing greater problems (i.e. pressure relief valve)
  • Shutdown – stop a process to prevent greater problems from occurring (i.e. motor overload)
  • Mitigate – alleviate the consequences of a failure (i.e. fire suppression equipment)
  • Replace – continue to provide a function by an alternative means (i.e. back up pump)
  • Guard – prevent an accident from occurring  (i.e. E-Stop)

Knowing what a protective device or system is, you may see that if a pressure relief valve became corroded and seized in the closed position, it would not be evident to the operators.   This is a hidden failure.   A hidden failure can be defined as; a failure which may occur and not be evident to the operating crew under normal circumstances if it occurs on its own.  Obviously, this could lead to significant consequences if the tank that the pressure relief valve is protecting is overpressurized.   This is where failure finding maintenance comes in.

Failure-finding maintenance is a set of tasks designed to detect or predict failures in the protective systems or devices to reduce the likelihood of a failure in the protective system and the regular equipment from occurring at the same time.  So how to do you determine how often the protective systems should be checked for failure?  Establish the frequency using a formula.

Establishing Failure Finding Maintenance Frequencies Using Formulas

There is a single formula that will take into consideration of all variables to establish the failure finding interval (FFI);  FFI = (2 x MTIVE x MTED) /MMF

Where;

  • MTIVE = MTBF of the protective device or system
  • MTED = Mean Time Between Failure of the Protected Function
  • MMF =   Mean Time Between Multiple Failures

So if we use an example from RCM2, we can see how this works; The users of a pump and a standby pump want the following from the system.

  • The probability of a multiple failure to be less than 1 in 1000 in any one year (MMF)
  • The rate of unanticipated failures of the duty pump is 1 in 10 years (MTED)
  • The rate of unanticipated failure of the standby pump is 1 in 8 years (MTIVE)

Therefore the correct failure finding interval would be;

  • FFI = (2 x 8 x 10) / 1000
  • FFI = (160)/1000
  • FFI = 0.16 years
  • 0.16 years x 12 months = 2 months

This indicates that the standby pump must be checked every two months to verify it is fully operational.   If this check is not performed, the likelihood of a multiple failures increases.

Lastly, if the failure of the protective device can be caused by the failure finding task itself, there is another approach to be used, which is beyond the scope of this article.

Do you have a program in place to check your protective systems?  If not, are you aware of the risk that your organization is exposed to?   Take the time to determine your protective systems and establish your failure finding tasks.

Remember, to find success; you must first solve the problem, then achieve the implementation of the solution, and finally sustain winning results.

I’m James Kovacevic
Eruditio, LLC
Where Education Meets Application
Follow @EruditioLLC

References;

  • RCM2 by John Moubray
  • Fixed Time Maintenance
  • On-Condition Maintenance

 

Filed Under: Articles, Maintenance and Reliability, on Maintenance Reliability

About James Kovacevic

James is a trainer, speaker, and consultant that specializes in bringing profitability, productivity, availability, and sustainability to manufacturers around the globe.

Through his career, James has made it his personal mission to make industry a profitable place; where individuals and manufacturers possess the resources, knowledge, and courage to sustainably lower their operating costs.

« Using Statistical Confidence to Protect your Family
A Two-Step Approach to Get Better at What You Do »

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Maintenance & Reliability series


by James Kovacevic

Join Accendo

Receive information and updates about articles and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Articles

  • Gremlins today
  • The Power of Vision in Leadership and Organizational Success
  • 3 Types of MTBF Stories
  • ALT: An in Depth Description
  • Project Email Economics

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy