Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Podcasts
  • Courses
    • Your Courses
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
  • Barringer Process Reliability Introduction Course Landing Page
  • Upcoming Live Events
You are here: Home / Articles / Electronic Data Collection: The Bridge to the Connected Plant

by Robert (Bob) J. Latino Leave a Comment

Electronic Data Collection: The Bridge to the Connected Plant

Electronic Data Collection: The Bridge to the Connected Plant

Guest post by Ken Latino

The Industrial Internet of Things (IIoT) has created immense excitement and promise for industrial facilities. Having connected assets that continuously monitor their own health and feed that information back in a way that is timely and actionable will drive business outcomes and help organizations achieve loftier goals. The challenge today is that many of our assets are not yet “connected” or “intelligent,” meaning that they are not yet outfitted with the health monitoring instrumentation that provides the live, automated data feed directly to a centralized repository of data. Yes, critical assets like turbine generators, boiler feed water pumps, highly critical motors and the like are indeed outfitted with modern instrumentation and fail-safe solutions. However, in most industrial facilities throughout the world, this is a very small population of assets.

A typical industrial facility has thousands of electric motors, gearboxes, pumps, and fans, among others, that have ZERO diagnostic instrumentation. While individually these assets may not be as important as some of the more critical assets mentioned above, collectively they are much more important to the productivity of the site. This leaves us with two choices: either outfit these assets with the required diagnostic instrumentation at incredible expense or – more realistically – collect this important data in another way.

The latter is the method that most industrial facilities are employing today.

This is where electronic field data collection comes in. Today, we depend on the eyes and ears of operators, maintenance journeymen and engineers to identify equipment issues and to report those in a way that is timely and actionable. In many cases, this is done with defined rounds or inspection routes that are performed using paper checklists or forms. While this is better than not having any information, it does not always deliver the required results. Paper forms are often lost or discarded, they require someone to review the information in its entirety to determine the next action and they require manual entry of those actions into the enterprise asset management (EAM)/ computerized maintenance management system (CMMS) or other plant execution systems. How often has an operator said, “I told my supervisor and he never did anything about it.”

Electronic field data collection can be the bridge to collecting critical asset health data until the economics of outfitting ALL of our assets with diagnostic technologies becomes a reality. The technology to digitize our existing paper-based routes and checklists is readily available today. In the past, we were limited by sizable and difficult-to-use devices that provided very limited connectivity and lacked the usability needed for everyday use. That has all changed with the advent of mobile computing. Now we have the power of a “real” computer (e.g. tablet or iPad) that can connect wirelessly to our networks to transmit asset health information in the same way that a connected device can. The additional benefits are having both the ability to collect both quantitative data like temperature readings and qualitative information, such as the insight of trained human beings who can provide accurate context to the information that is being generated.

The technology for performing electronic rounds are abundant. Aside from technology though, we must also look at the cultural aspects of this type of effort. As Peter Drucker once said, “Culture eats strategy for breakfast.” To ensure success, this type of effort must be viewed as a replacement for inefficient work, including paper based routes, with more effective methods. If this is viewed as piling on more work, rather than making work easier, it will be fought with resistance. Before deploying any technology, ensure that you have a defined work process for how the data will be collected and how the data will be used. If workers see that they are out collecting data and it is not reviewed or acted upon, the effort will generate no positive outcomes. However, if employees see that their findings are addressed and viewed as valuable, they will continue to support the effort.

8 Essential Features of Electronic Field Data Technology

  1. Integrates with current maintenance and asset management systems
  2. Creates templates for data entry
  3. Integrates with existing asset strategy efforts
  4. Allows for both numeric and character based responses
  5. Has the ability to drive field data collection in both online and offline modes
  6. Can create recommendations in the field on mobile devices
  7. Should be device-agnostic and capable of working on tablets, phones and a variety of operating systems
  8. Data should integrate seamlessly with existing IIoT technologies

Conclusion

The vision of a totally digital plant is rapidly becoming a reality. Devices are more economical and practical to deploy. However, we still cannot overlook the fact that many of our plants are older and will not have this connected technology in the near-term. This is where a mobile electronic field data collection effort can provide the bridge to the digital industrial facility, capturing the benefits of digital asset health today while the economics and practicality of a fully connected facility catches up.

Ken Latino

Managing Director

Prelical Solution LLC

kenneth.latino@prelical.com

Filed Under: Articles, on Systems Thinking, The RCA

About Robert (Bob) J. Latino

Robert Latino is currently a Principal at Prelical Solutions, LLC, along with his brother Ken Latino. Bob was a Founder and CEO of Reliability Center, Inc. (RCI), until it was acquired in 2019. RCI is a 50-year-old Reliability Consulting firm specializing in improving Equipment, Process and Human Reliability. Mr. Latino received his Bachelor’s degree in Business Administration and Management from Virginia Commonwealth University. For any questions, please contact Bob at blatino@prelical.com

« World Economic 2021 Forum Global Risk Report
5 Benefits of CMMS Software for Manufacturing Plants »

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

logo for The RCA article series image of BobArticle by Robert (Bob) J. Latino
Principal at Prelical Solutions, LLC

in the The RCA article series

Join Accendo

Receive information and updates about articles and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Posts

  • Gremlins today
  • The Power of Vision in Leadership and Organizational Success
  • 3 Types of MTBF Stories
  • ALT: An in Depth Description
  • Project Email Economics

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy