Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Podcasts
  • Courses
    • Your Courses
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
  • Barringer Process Reliability Introduction Course Landing Page
  • Upcoming Live Events
You are here: Home / Articles / Common Formulas

by Fred Schenkelberg 6 Comments

Common Formulas

Common Formulas

Running through a couple of practice CRE exams recently (yeah, I know I should get out more…) found a few formulas kept coming up in the questions. While it is not a complete list of equation you’ll need for the exam, the following five will help in many of the questions. They seem popular maybe because the relate to key concepts in the body of knowledge, or they are easy to use in question creation. I do not know why.

The exponential reliability function.

$$ \large\displaystyle R\left( t \right)={{e}^{-\lambda t}}={{e}^{-{}^{t}\!\!\diagup\!\!{}_{\theta }\;}}\text{, where }\theta ={}^{1}\!\!\diagup\!\!{}_{\lambda }\;$$

This formula provides the probably of success at time t given either the failure rate, λ, or the MTBF (or MTTF), θ.

Note: as many of you know, I do not like the use of MTBF in general and would prefer the exponential distribution to find less prominence in the CRE Body of Knowledge, yet it is there and probably the most common formula used in the exam. Alas. Once you get your certification or want to improve your reliability engineering skills, see my other blog at nomtbf.com.

The failure  rate, λ, or the MTBF (or MTTF), θ, are determined using the simple formula

$$ \large\displaystyle \theta ={}^{1}\!\!\diagup\!\!{}_{\lambda }\;=\frac{\text{Total time}}{\text{number of failures}}$$

The total time is all time the units are on test. So, if there are three units tested for 500 hours and one fails at 400 hours (not replaced), the total time is 500 + 500 + 400 = 1,400 hours. And the total number of failures is one. Thus we would find θ = 1,400 / 1 = 1,400 hours. The inverse is the failure rate.

See the post on Exponential Reliability for more details.

The next two are related as they deal with reliability modeling using reliability block diagrams, RBD. The series model has units arranged such that any one item that fails causes the system to fail. The formula for three units is

$$ \large\displaystyle {{R}_{system}}={{R}_{1}}\times {{R}_{2}}\times {{R}_{3}}$$

This obviously generalizes to any string of items in series. A nice trick is when all the individual items are described by an exponential distribution, one then can add the failure rates (not MTBF’s) to find the system failure rate, then do the exponential calculation once to find the system reliability.

The related formula is for the parallel structure. If two items are in parallel, then the formula is

$$ \large\displaystyle {{R}_{system}}=1-\left[ \left( 1-{{R}_{1}} \right)\left( 1-{{R}_{2}} \right) \right]$$

The 1-R is the unreliability at time t, which permits multiplying the unreliabilities as they are now in a series structure, then another 1 minus the result to bring back to reliability. this again is scalable for any number of units in parallel.

See this list of posts for more details around these concepts and formulas.

The last formula is the binomial.

$$ \large\displaystyle P\left( x,n,p \right)=\left( \begin{array}{l}n\\x\end{array} \right){{p}^{x}}{{\left( 1-p \right)}^{n-x}}$$

Only useful when an experiment only has two possible outcomes (i.e. pass/fail, blue/green, etc.) The formal above is the probability of exactly x successes in n trials with a probability of success equal to p on each trial.

Looks like I need to write an article on the binomial distribution.

Each of these formulas appeared a few times in each practice exam I did. Of course, your exam may be quite different, yet knowing these formulas and how to use them will serve you well as a reliability professional.

What do you see as the most common formulas? Let me know if I need to add to the above list.


Related:

Exponential Reliability (article)

The Exponential Distribution (article)

Using The Exponential Distribution Reliability Function (article)

 

Filed Under: Articles, CRE Prep, CRE Preparation Notes, Probability and Statistics for Reliability Tagged With: Exponential distribution, Failure Rate, Statistics distributions and functions

About Fred Schenkelberg

I am the reliability expert at FMS Reliability, a reliability engineering and management consulting firm I founded in 2004. I left Hewlett Packard (HP)’s Reliability Team, where I helped create a culture of reliability across the corporation, to assist other organizations.

« Reliability from Hazard Step Function
Binomial Probability Density Function »

Comments

  1. Keron says

    March 2, 2013 at 3:38 PM

    Also: Z=(X-xbar)/std dev

    Reply
    • Fred Schenkelberg says

      March 2, 2013 at 3:42 PM

      Agree the standard normal formula is quite useful as they do have a penchant for problems that require the standard normal table.

      cheers,

      Fred

      Reply
  2. Philip Frohne says

    January 20, 2018 at 4:35 PM

    The exponential formula is used in many popular textbooks including my own Quantitative Measurements for Logistics (McGraw-Hill). But my research yields that it was developed to fit the curve of WW II tube type aircraft radio failures. If a person substitutes Pi (3.1415) instead of e (2.1718), the curve simple deepens a bit – not significant enough to prove the use of the formula for anything OTHER than 1950 aircraft radios. Or am I missing something? There must be a reason why we are perpetuating this formula in Reliability textbooks.

    Phil Frohne, CPL

    Reply
    • Fred Schenkelberg says

      January 20, 2018 at 4:37 PM

      Hi Philip, I too am frustrated that this formula continues to dominate reliability work, it shouldn’t. One reason it is so commonly used it is simple. One parameter, you can add lambda’s, and the inverse of lambda is MTBF… so it persists for these and other misguided reasons. cheers, Fred

      Reply
  3. Mariraja Ponraj says

    February 5, 2018 at 10:46 PM

    For understanding about Binomial Distribution visit https://www.mathsisfun.com/data/binomial-distribution.html

    It is a site that makes learning math intuitive.

    Thanks,

    Cheers,
    Bimmer

    Reply
    • Fred Schenkelberg says

      February 6, 2018 at 8:18 AM

      Hi Mariraja, yes the pages does an excellent job explaining the binomial distribution. Thanks for the recommendations. cheers, Fred

      Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

CRE Preparation Notes

Article by Fred Schenkelberg

Join Accendo

Join our members-only community for full access to exclusive eBooks, webinars, training, and more.

It’s free and only takes a minute.

Get Full Site Access

Not ready to join?
Stay current on new articles, podcasts, webinars, courses and more added to the Accendo Reliability website each week.
No membership required to subscribe.

[popup type="" link_text="Get Weekly Email Updates" link_class="button" ][display_form id=266][/popup]

  • CRE Preparation Notes
  • CRE Prep
  • Reliability Management
  • Probability and Statistics for Reliability
  • Reliability in Design and Development
  • Reliability Modeling and Predictions
  • Reliability Testing
  • Maintainability and Availability
  • Data Collection and Use

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy