Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Podcasts
  • Courses
    • Your Courses
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
  • Barringer Process Reliability Introduction Course Landing Page
  • Upcoming Live Events
You are here: Home / Archives for Articles / on Product Reliability / Metals Engineering and Product Reliability

Metals Engineering and Product Reliability

The topics should be of interest to product design engineers. I’ll write about topics related to the metals engineering perspective to component design and metallurgical aspects of component reliability.

by Michael Pfeifer, Ph.D., P.E. 4 Comments

Improving Fatigue Resistance

Improving Fatigue Resistance

Fatigue involves localized, permanent damage to metals exposed to cyclic stress. In a previous article I discussed the fatigue mechanism. This article covers factors that can be addressed to improve high-cycle fatigue life

Factors that influence fatigue life

Several design, material, and fabrication factors influence component and joint fatigue life, including the following: [Read more…]

Filed Under: Articles, Metals Engineering and Product Reliability, on Product Reliability

by Michael Pfeifer, Ph.D., P.E. Leave a Comment

Failure Mode and Mechanism

Failure Mode and Mechanism

In a previous article I discussed the degradation of materials due to exposure to stressors (use conditions) and how to identify stressors. Cracks form and grow in axles and shafts due to cyclic stress, steel screws corrode when exposed to water, some plastics become brittle when exposed to sunlight, and coatings on surfaces can wear away. When too much degradation occurs, components and joints fail, leading to product failure.

Things to consider during design

If you’re someone who likes to design reliable products, you must think about the stressors and their effects. When designing a product, we must identify the following things [Read more…]

Filed Under: Articles, Metals Engineering and Product Reliability, on Product Reliability

by Michael Pfeifer, Ph.D., P.E. 2 Comments

Fatigue

Fatigue

Fatigue is a common degradation and failure mechanism. It involves localized, permanent damage to metals exposed to cyclic stress. The stress can be uniaxial, bending, or torsional resulting from a variety of sources including an applied force, vibration, acceleration and deceleration, and differences in thermal expansion between mating components exposed to heating and cooling cycles. Localized means the damage is confined to a small portion of a component or joint.

[Read more…]

Filed Under: Articles, Metals Engineering and Product Reliability, on Product Reliability

by Michael Pfeifer, Ph.D., P.E. 2 Comments

Why Stainless Steel is Corrosion Resistant

Why Stainless Steel is Corrosion Resistant

Stainless steel is known for its corrosion resistance in many environments, with different alloys having different levels of corrosion resistance. Also, stainless steels are available with a wide range of strengths. Understanding the reasons for the corrosion resistance is helpful for selecting alloys based on the required strength and environment to which the steel will be exposed.

[Read more…]

Filed Under: Articles, Metals Engineering and Product Reliability, on Product Reliability

by Michael Pfeifer, Ph.D., P.E. Leave a Comment

Thinking small

Thinking small

Fatigue cracks that originate at inclusions. Stainless steel intergranular corrosion due to chromium carbide precipitates. Low steel toughness because martensite not tempered enough. Low aluminum strength because of excessive grain boundary precipitation. Orange peel due to large grains.

These are examples of how problems with a metal’s microstructure lead to reliability and performance problems. Of course, there are thousands of examples of microstructures that lead to good reliability and good performance.

One hurdle to understanding metallurgy is being able to think small – very small. Less than a millimeter. Less than a micron. And sometimes on the scale of atoms.

[Read more…]

Filed Under: Articles, Metals Engineering and Product Reliability, on Product Reliability

by Michael Pfeifer, Ph.D., P.E. 2 Comments

Residual Stresses in Metals

Residual Stresses in Metals

When designing components consider fatigue or stress corrosion cracking. It’s important to be cognizant of the residual stresses in the component. Understanding residual pressure and its sources is important when making decisions about a component’s shape, features, alloy, and fabrication process.

Fatigue and stress corrosion cracking require the presence of tensile stresses on a component. When residual presures are tensile they add to the applied tensile pressure, reducing the life of a component. In fact, components sometimes fail due to stress corrosion cracking when residual stress is the only source of tensile stress.

[Read more…]

Filed Under: Articles, Metals Engineering and Product Reliability, on Product Reliability

by Michael Pfeifer, Ph.D., P.E. Leave a Comment

Steel Hydrogen Embrittlement

Steel Hydrogen Embrittlement

One failure mechanism that I’m frequently asked about is hydrogen embrittlement of carbon and low-alloy steel. So, in this article I’ll discuss that topic.

Hydrogen embrittlement is the result of the absorption of hydrogen by susceptible metals resulting in the loss of ductility and reduction of load bearing capability. Sustained stress on an embrittled material can result in cracking and fracture at stresses less than the metal’s yield strength.

[Read more…]

Filed Under: Articles, Metals Engineering and Product Reliability, on Product Reliability

by Michael Pfeifer, Ph.D., P.E. Leave a Comment

Product Reliability: Selection and Control

Product Reliability: Selection and Control

In a recent Accendo podcast, Chris Jackson and Fred Schenkelberg discussed who is responsible for producing a reliable product, which included designers and suppliers. I’m going to weigh in.

The reliability of any product depends on the reliability of the individual components and joints within the product. That is, the ability of the components and joints to withstand exposure to stressors without degrading to the point that they fail, resulting in the product no longer performing as required. Stressors, which include corrosion conditions, fatigue, and wear, were discussed in an earlier article.

Whether individual components and joints have the reliability required boils down to two basic aspects of engineering – selection and control. The appropriate form (i.e. shape, dimensions, features) and materials for components and joints must be selected during product design. Then, systems must be put in place to control fabrication of components and joints, ensuring their form and materials are as specified. This will enable the components and joints to consistently meet performance and reliability requirements.

So, who’s responsible for this selection and control?

[Read more…]

Filed Under: Articles, Metals Engineering and Product Reliability, on Product Reliability

by Michael Pfeifer, Ph.D., P.E. Leave a Comment

Designing Components for Strength and Fatigue

Designing Components for Strength and Fatigue

Metal strength and fracture toughness are important mechanical properties for components exposed to fatigue conditions and components with stress concentrations. Optimization of the two properties through alloy selection and component fabrication must be considered when designing components for these situations.

For structural components, strength and fracture toughness are two important mechanical properties. Yield strength is the stress a metal can withstand before deforming. Tensile strength is the maximum stress a metal can support before starting to fracture. Fracture toughness is the energy required to cause a material that contains a crack to fracture.

[Read more…]

Filed Under: Articles, Metals Engineering and Product Reliability, on Product Reliability

by Michael Pfeifer, Ph.D., P.E. 2 Comments

Example of Using Failure Analysis to Improve Reliability

Example of Using Failure Analysis to Improve Reliability

Here’s an example of how a metallurgical failure analysis led to identification of the root cause of a failure, and to identification of the corrective actions needed to prevent the failures from recurring.

Failure analysis

As I discussed in my previous article, metallurgical failure analysis can be used to improve product reliability. The information from failure analysis of a failed component is used to determine the root cause of the failure. Once the root cause is identified, the failure analysis data and findings is used to help identify the corrective measures required to prevent the failure from recurring.

[Read more…]

Filed Under: Articles, Metals Engineering and Product Reliability, on Product Reliability

by Michael Pfeifer, Ph.D., P.E. Leave a Comment

Using Failure Analysis to Improve Product Reliability

Using Failure Analysis to Improve Product Reliability

Failures during product testing and use are a fact of life. Even with the most robust design we can develop an overly aggressive reliability test or find users that dish out punishing treatment, causing product failures. And for designs that are less robust, standard reliability tests and normal users will cause failures, occasionally or frequently depending on the design robustness.

When a product fails, its related to failure of individual components and/or joints between components. When a component or joint fails, it’s because their materials degraded to the point that the component or joint could no longer perform as required.

[Read more…]

Filed Under: Articles, Metals Engineering and Product Reliability, on Product Reliability

by Michael Pfeifer, Ph.D., P.E. 2 Comments

Reliability Testing – Product vs. Materials

Reliability Testing – Product vs. Materials

Any product is an assembly of components comprised of different materials. The reliability of the product depends on the reliability of the materials – their ability to withstand exposure to the use conditions without degrading to the point that the component or joint stops performing as needed.

There are two approaches for evaluating the reliability of materials: 1) product testing and 2) materials testing.  Both involve exposing test samples to actual or simulated use conditions and evaluating the response of the test samples as a function of the amount of exposure to the test conditions. For example, exposure to thermal cycling between -40 and +40 °C or exposure to salt spray. [Read more…]

Filed Under: Articles, Metals Engineering and Product Reliability, on Product Reliability

by Michael Pfeifer, Ph.D., P.E. Leave a Comment

Metal Corrosion

Metal Corrosion

In the previous article I discussed sources of stressors that can cause degradation of the materials in components and joints. In this article I’ll discuss the basics of metal corrosion – the electrochemical cell, seven common forms of corrosion, and examples of metals engineering and mechanical design approaches to control corrosion.

[Read more…]

Filed Under: Articles, Metals Engineering and Product Reliability, on Product Reliability

by Michael Pfeifer, Ph.D., P.E. Leave a Comment

Design for Reliability – Identifying Stressors

Design for Reliability – Identifying Stressors

In the previous articles I discussed the component design process, the considerations for designing components, and the importance of leveraging materials engineering to design components that meet performance and reliability requirements at low cost.

I will start focusing on reliability, discussing the considerations for identifying component and joint reliability requirements. I will refer only to components for ease of writing and reading, but the discussion also applies to metallurgical joints, i.e. weld, braze, and solder joints.

In this article, I will discuss identification of the conditions that can cause degradation of the materials that comprise components and joints. [Read more…]

Filed Under: Articles, Metals Engineering and Product Reliability, on Product Reliability

by Michael Pfeifer, Ph.D., P.E. Leave a Comment

Component Design Process

Component Design Process

In the previous article I discussed product design in general and the importance of leveraging materials engineering to design components that meet performance and reliability requirements at low cost. Both component form and materials can and should be engineered to optimize a component’s design.

In this article I discuss a component design process that explicitly includes materials engineering considerations. This process involves consideration of all design requirements and cost. Not just designing for reliability. That’s where selecting materials gets tricky – having to consider different sets of requirements and design for ease of component fabrication and joining.

[Read more…]

Filed Under: Articles, Metals Engineering and Product Reliability, on Product Reliability

  • 1
  • 2
  • Next Page »
Headshot of Michael PfeiferArticles by Michael Pfeifer, Ph.D., P.E.
in the Metals Engineering and Product Reliability article series

Join Accendo

Receive information and updates about articles and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Posts

  • Gremlins today
  • The Power of Vision in Leadership and Organizational Success
  • 3 Types of MTBF Stories
  • ALT: An in Depth Description
  • Project Email Economics

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy