Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Podcasts
  • Courses
    • Your Courses
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
  • Barringer Process Reliability Introduction Course Landing Page
  • Upcoming Live Events
You are here: Home / Articles / ‘Artificial deep machine learning intelligence’ is never your first option

by Christopher Jackson Leave a Comment

‘Artificial deep machine learning intelligence’ is never your first option

‘Artificial deep machine learning intelligence’ is never your first option

When I was working at a university, I was involved in a conversation with a representative of an energy company. He was having all manners of problems with a valve. It was failing too often. He wanted us to look at what we could do in terms of optimizing the preventive maintenance (PM) or servicing regime to hopefully fix these problems. But … there was a catch.

He had heard about ‘deep learning’ and ‘artificial intelligence’ from another university. And he wanted some of it.

In fact, that was pretty much all he wanted.

We talked about other options, like a Failure Reporting and Corrective Action System (FRACAS) which would allow his organization to examine failures to better understand their failure mechanisms – and by extension inform a better PM regime. We talked about Mean Cumulative Functions (MCFs), modelling Rate of Occurrence of Failure After Servicing (ROFAS) and other tools with proven track records that use existing data.

He wasn’t interested.

And neither were the professors on either side of me. This ‘deep learning’ and ‘artificial intelligence’ stuff sounded like great research opportunities that could bring in more money.

So what is wrong with using ‘deep learning,’ ‘artificial intelligence’ or ‘machine learning?’ Nothing … if they are used at the right time.

Machine (and deep) learning involves computers going through massive amounts of data to identify patterns or other things that might be useful. For example, we can get lots of different people to write down the digits zero through to nine on a piece of paper. We can then show each digit on each piece of paper to a computer using a camera. If we have lots of people showing the computer lots of numbers, machine learning can identify common patterns across digits so that it can automatically recognize (for example) handwritten postal codes on envelopes that allow automated sorting. This is very, very powerful.

Machine learning is seen as a part of artificial intelligence. And in its simplest form, artificial intelligence is all about trying to program a computer to mimic how humans learn.

Sounds great … right? Well, there is a problem with this approach.

There are humans everywhere who are already built to learn.

So let’s go back to the valve I talked about at the very start. Let’s say that the valve was failing due to corrosion. If a human examined a failed valve, they should be able to identify corrosion as the main failure mechanism. And there are lots of textbooks out there with fantastic corrosion models that our human could use to tailor a PM regime … or better yet, work out how to redesign the valve to increase reliability.

But when it comes to artificial intelligence or machine (deep) learning, our computers will need HUGE amounts of failure data to identify a trend that they may or may not be able to recognize as something that could be explained by corrosion.

Computers are different to us. Their overwhelming strength is their ability to sift through HUGE amounts of data that would otherwise overwhelm our human brains to identify trends we can then use to make better decisions. But they need HUGE amounts of data – which is always expensive when it comes to reliability. They need HUGE amounts of data because they haven’t gone to school, university, or spent their entire lives trying to figure things out. Data and experience contain information. No experience means you need more data.

Our (human) overwhelming strength is to be able to deduce or otherwise reason what might have caused something. Like Sherlock Holmes. We started perfecting this the day we were born. And we are so good at it, that deducing what caused something to happen can take seconds. It’s called ‘causality.’

So when do we use artificial intelligence or machine (deep) learning?

When we have exhausted our human efforts.

Before we get wowed by artificial intelligence algorithms and machine (deep) learning software, we need to use our ‘human computers’ first. They can identify that wonderful thing called ‘causality’ because they have spent their entire life becoming good at it.

Artificial intelligence and machine (deep) learning are fantastic tools. But you need to focus on the problem you are trying to solve and not fall in love with a tool. A six degree of freedom milling machine is a very sophisticated tool. But sometimes, you just need a screwdriver.

 

What about you? Have you had any experience where an amazing new tool that has been forced upon you or your team where trusting a human would have been a better option?

 

[display_form id=396]

Filed Under: Articles, on Product Reliability, Reliability in Emerging Technology

About Christopher Jackson

Chris is a reliability engineering teacher ... which means that after working with many organizations to make lasting cultural changes, he is now focusing on developing online, avatar-based courses that will hopefully make the 'complex' art of reliability engineering into a simple, understandable activity that you feel confident of doing (and understanding what you are doing).

« Effective Root Cause Analysis Means Accepting We Could Be Part of the Problem
How do I Choose the Appropriate Type of Control Chart? »

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Article by Chris Jackson
in the Reliability in Emerging Technology series

Join Accendo

Receive information and updates about articles and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Posts

  • Gremlins today
  • The Power of Vision in Leadership and Organizational Success
  • 3 Types of MTBF Stories
  • ALT: An in Depth Description
  • Project Email Economics

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy