Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Podcasts
  • Courses
    • Your Courses
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
  • Barringer Process Reliability Introduction Course Landing Page
  • Upcoming Live Events
You are here: Home / Articles / The 9 Indicators of an Effective Lubrication Program

by James Kovacevic Leave a Comment

The 9 Indicators of an Effective Lubrication Program

Understanding the Key Components of an Effective Lubrication Program

Lubrication is often overlooked in organizations.  Why it is overlooked, I am unsure.  Maybe it is because it is considered to be a basic job, given to the apprentice, or it is just too simple to not to do it correctly.

However, with a focus on lubrication, many failure mechanisms can be reduced and the equipment life prolonged.  But implementing an effective and world-class lubrication program is not simple.  It requires a dedicated focus to implement and sustain.  Below is my list of what I look for when evaluating a lubrication program.

  1. Properly Trained Specialists – Any program worth implementing requires having staff trained properly.  Depending on where the focus is, there are many different options for training and certification in machinery lubrication.  The International Council for Machinery Lubrication (ICML) offers numerous certifications and levels, whether you are a technician, analyst, or lubrication engineer.  Ideally, all technicians that perform lubrication activities will be trained and certified to MLT I, and those managing the program will be a minimum MLT II.  Selecting the right training for your staff requires an understanding of where the program will be.  Lastly, be sure to select reputable trainers in the field of lubrication.
  2. Proper Storage of Lubrication – A great tell-tale sign of the state of the lubrication program, is to walk through and look at the oil room.  How clean is the room?  Are there open containers?  Are the new lubricants clearly labeled, and in sealed containers?  Is old oil mixed in with new oils?   Having an organized and clean storage is for lubricants is vital.  It is the first step to prevent cross-contamination and contamination of the oil.
  3. Identified Lube Points – Identified lube points is not just labeling each lube point in the field with a colored cap or tag.  It may make more sense to have all of the lube points indicated on the PM procedure.   The goal here is to make sure all lube points are identified, so not one is missed during the course of a lube route.  The lube points also need to have the type and quantity of lubricant required (once again, this may be in the procedure or in the field).
  4. Avoiding Cross-Contamination – By properly labeling the lube points in the field, the chance of cross contaminating the lubricant is reduced, but it is not eliminated.  There should be dedicated containers for each type of lubricant (sealed transfer containers, grease guns, etc.).  This will ensure there is no potential for cross-contaminating oils with others (as many additives are not compatible with each other).
  5. Preventing Contamination – Preventing contamination is critical to keeping not only the lubricant clean but the machinery as well.  Preventing contamination starts with the oil room, and having desiccant breathers and filters on any drums of oil.   In the field, there needs to be desiccant breathers and filters as well.  Why?  As the gearbox heats up and cools, the air inside expands and contracts, which pulls in external air, moisture and anything else in the air.   When it comes to greasing, it means appropriately cleaning the grease zerts and grease guns before applying grease to the equipment.
  6. Ensuring Clean Lubricants – Do you think that the oil coming in from the vendor is clean?  It may be clean, but is it clean enough for your application?  Before transferring oil from the storage container to the asset, it should be filtered to meet the needs of the asset.  Use the ISO Cleanliness guidelines to help select the right cleanliness for your application.
  7. Oil Analysis in Place – Oil analysis should be used in two ways.  The first is to understand the condition of the lubricant and make an informed decision on whether to change the lubricant or not.  The oil replacement should be driven by the condition of the oil, not strictly by time.  The second way it is used is to understand what is going on inside the asset by understanding wear particles, etc.   The success of an Oil Analysis depends heavily on the collection and handling of the sample.  Therefore, I often look for oil sample collection procedures.
  8. Acoustic Lubrication – This takes the time-based re-lubrication task and expands it to ensure that the equipment is neither over lubricated or under lubricated.  It also provides insights into the condition of the equipment, complimenting vibration and oil analysis.
  9. Minimal Lubricants – When a program is designed correctly, there should be a minimum number of lubricants on hand.  The lube specialist should be able to consolidate the number of oils and greases which reduces the probability of cross-contamination and improves the purchasing power of the organization.

Effective lubrication takes many of the practices mentioned above and provides a governance framework to support and ensure it is executed as designed. With an effective lubrication program, the organization should see an increase in uptime, a reduction in lubrication consumption and a reduction in the number of lubricants on site.  These changes enable the organization to operate more efficiently.

Next Steps

To begin the journey to improve your lubrication program, you do not need a full assessment and massive project.  Take one of the items above, learn more about it and start a pilot.  Make sure to build a business case with your pilot to capture the benefits and use that as a basis to build the business case for the larger project.

To learn more about building the business case and selecting the right pilot, be sure to check out The Six Sigma Design for Reliability: Volume 1 – Selecting Project Objectives (Leadership for Asset Management Excellence) by Darrin Wikoff.  This book will help you select and develop a business case for your pilot projects.

If you need any assistance with your lubrication program, please contact jkovacevic@eruditio.com for additional information.

I’m James Kovacevic
Principal Instructor at Eruditio
Where Education Meets Application
Follow @EruditioLLC
Follow @ReliableJames
Follow @HPReliability

References

  • The Six Sigma Design for Reliability: Volume 1 – Selecting Project Objectives (Leadership for Asset Management Excellence) by Darrin Wikoff
  • The International Council for Machinery Lubrication

Filed Under: Articles, Maintenance and Reliability, on Maintenance Reliability

About James Kovacevic

James is a trainer, speaker, and consultant that specializes in bringing profitability, productivity, availability, and sustainability to manufacturers around the globe.

Through his career, James has made it his personal mission to make industry a profitable place; where individuals and manufacturers possess the resources, knowledge, and courage to sustainably lower their operating costs.

« Derecho. A Black Swan Event?
The 4 Physical Failure Mechanisms of Component Failure: The Basics (Part I) »

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Maintenance & Reliability series


by James Kovacevic

Join Accendo

Receive information and updates about articles and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Articles

  • Leadership Values in Maintenance and Operations
  • Today’s Gremlin – It’ll never work here
  • How a Mission Statement Drives Behavioral Change in Organizations
  • Gremlins today
  • The Power of Vision in Leadership and Organizational Success

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy